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In the context of flow-induced vibration, the component of the hydrodynamic coefficient

in-phase with the velocity of an oscillating body, Cv, can be termed “positive excitation”

or “negative damping” if Cv > 0. While this empirical approach is of long standing

in the literature it does not account for distinct physical mechanisms that can be

associated with fluid excitation and fluid damping. In this work, we decompose the

total hydrodynamic force into a drag component aligned with the time-dependent

vector of the relative velocity of a cylinder oscillating transversely with respect to a

free stream and a lift component normal to the drag component. The drag and lift

components are calculated from laboratory measurements of the components of the

hydrodynamic force in the streamwise and cross-stream directions combined with

simultaneous measurements of the displacement of an elastically mounted rigid circular

cylinder undergoing vortex-induced vibration. It is shown that the drag component only

does negative work on the oscillating cylinder, i.e., it is a purely damping force as

expected from theoretical considerations. In contrast to this the lift component mostly

does positive work on an oscillating cylinder, i.e., it is the sole component providing fluid

excitation. In addition, the new excitation (lift) coefficient, CL displays the same scaling

as the linear theory predicts for the traditional excitation coefficient, Cv, even though CL

is two orders of magnitude higher than Cv. More importantly, while Cv depends on the

mechanical properties of the hydro-elastic system, according to linear theory, we provide

here evidence that CL depends solely on fluid-dynamical parameters. Finally, an effective

drag is calculated that represents the dissipation of energy within the fluid, and it is found

that the effective drag is not equal to the mean value of the drag component. The effective

drag provides complementary information that characterizes the state of the wake flow.

Its variation suggests that the wake can dissipate the kinetic energy most vigorously at

the end of the initial branch.
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1. INTRODUCTION

Vortex-induced vibration (VIV) is a fundamental problem in
fluid-structure interaction. A compliant structure such as an
elastic or elastically-mounted cylinder can be excited by the
unsteady fluid force originating from vortex shedding in its wake.
The phenomenon is most intense when the vortex shedding
and the structural vibration synchronize at some common
frequency, which is within a narrow range of the main natural
eigenfrequency of the structure. There exists comprehensive
literature on the subject of VIV, including the reviews of Bearman
[1], Sarpkaya [2], and Williamson and Govardhan [3].

Most of the basic research on the problem has dealt with
rigid circular cylinders that are elastically mounted so as to
have one degree of freedom to oscillate, most often this is
transversely to an incident free stream, which is one of the
simplest configurations to study VIV. The vibration response of
such hydro-elastic systems can be characterized by the amplitude,
A∗, and frequency, f ∗, where the star denotes normalization of
the amplitude by the cylinder diameter and of the frequency
by the natural frequency of the structure (with or without
consideration of the surrounding fluid). It has been established
in the published literature that the response depends on the
following dimensionless parameters: the ratio of the structural
mass to the mass of fluid displaced by the structure, the mass
ratio, m∗; the ratio of the structural damping to the critical
damping, the damping ratio, ζ ; the reduced velocity, U∗, in
addition to the Reynolds number, Re. Khalak and Williamson
[4] first classified the VIV response as a function of reduced
velocity for hydro-elastic systems with a very low mass ratio
and with a very low damping ratio into four distinct regions,
the initial excitation region, the upper branch of very high
amplitude, the lower branch of moderate amplitude, and the
desynchronization region. Strong resonance and synchronization
between the oscillation and the fluid forcing occurs in the upper
and lower branches. For hydro-elastic systems with a high value
of combined mass–damping, the upper branch does not exist
as a distinct branch (see [5]). When the cylinder is contained
between parallel walls, the blockage ratio becomes a governing
parameter [6, 7].

The equation of motion for a freely-oscillating cylinder with
one degree of freedom in a direction transverse to an incident
free stream can be written as [8]

m
(

ÿ+ 2π fNζ ẏ+ 4π2f 2Ny
)

= Fy, (1)

where m, fN , and ζ are the mass, the undamped natural
frequency, and the damping ratio of the structure, respectively;
Fy is the hydrodynamic force acting in the transverse direction; y
is the displacement of the cylinder and each overdot represents
a derivative with respect to time. It is often assumed that the
vortex-induced oscillation is pure tone and therefore can be
described as a sinusoidal function of time t, i.e., y(t) = A sin 2π ft,
where A and f are the amplitude and the frequency of oscillation,
respectively. In this case, the hydrodynamic force can be analyzed
into components in-phase with velocity and acceleration, i.e.,

Fy(t) =
1

2
ρU2

∞DL
(

Cv cos 2π ft − Ca sin 2π ft
)

, (2)

where ρ is the density of the fluid, U∞ is the velocity of the free
stream, D is the outer diameter of the cylinder, and L its length.
In the following, it will be assumed that the hydrodynamic force
and the oscillation are homogeneous along the span, making
it permissible to just consider a unit length of the cylinder. In
Equation (2), Cv and Ca are hydrodynamic coefficients that are
usually taken as Fourier averages over many cycles of oscillation
of the transverse component of the unsteady force on the
cylinder [2].

The above decomposition is a harmonic approximation
of the unsteady force. Sarpkaya [2] discussed extensively
the limitations of this linearized approach if the oscillations
have amplitude and/or frequency modulations. However,
displacement measurements show that the free vibration is close
to pure tone in much of the synchronization region and the
harmonic assumption is justified in this region, at least (also see
[9]). Using this assumption, the following result can be obtained

A =
(

ρU2
∞DL

16π2mζ fN f

)

Cv or A∗ =
Cv

4π3m∗ζ

(

U∗

f ∗

)2

f ∗, (3)

where A∗ = A/D, f ∗ = f /fN , m∗ = 4m/ρπD2, and
U∗ = U∞/fND. Since all terms inside the parenthesis in the
equation on the left hand side are positive, it is required that
Cv > 0 for self-excited and self-sustained oscillations of finite-
amplitude to materialize. As a consequence, Cv is considered
as a positive excitation or a negative damping coefficient. Often
Cv is also encountered as −Cd, which is referred to as a
drag coefficient [2, 10]. It may be argued that the above
decomposition based on the force components in-phase with
velocity and acceleration is purely empirical. More importantly,
it may be questionable whether the linearized force can (or
cannot) properly attribute fluid excitation, fluid damping, and
fluid inertia to physical mechanisms illuminating how the
hydrodynamic forces are generated.

To gain physical insight into the origin of the hydrodynamic
forces, we take a view of the VIV problem from the following
perspective. Consider a cylinder that is dragged through still
fluid so as to exactly replicate the vortex-induced vibration of an
elastically-supported cylinder transversely to a free stream [11].
Kinematic similarity requires that the relative velocity between
the moving cylinder and the fluid varies in exactly the same
manner in both configurations. As the cylinder is dragged in a
prescribed path through still fluid, it does work on the fluid at
the rate F · U where F and U , respectively, are the instantaneous
vectors of the force acting on the cylinder and of the velocity
of the cylinder as it moves through the still fluid. Only the
component of the force aligned with instantaneous velocity can
do work on the fluid. The energy transferred to the otherwise still
fluid is eventually dissipated via the action of viscosity. Since the
force aligned with the instantaneous velocity of the cylinder can
only be associated with energy transfer from the structure to the
fluid, it must be a purely damping force, i.e., it is expended in the
resistance of the fluid to the motion of the cylinder. In the case of
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an elastically-mounted rigid cylinder undergoing vortex-excited
vibration transversely to a uniform free stream, the relative
velocity is U = U∞i− ẏj, where i and j, respectively, are the unit
vectors in the streamwise and transverse directions. In this case,
the net rate at which “energy is transferred to the fluid” (in fact
that amount represents the rate of energy dissipation in the fluid
in this case) is given by FxU∞−Fyẏ [12]. Thus, we see that the rate
of work done on the fluid, i.e., fluid damping, depends on both
the streamwise and transverse components of the hydrodynamic
force. Another consequence of the above approach is that true
fluid excitation can only result from the component of the force
normal to the direction of the instantaneous relative velocity.

In the present study, we analyze the total hydrodynamic
force acting on a freely vibrating cylinder into a component
acting along the instantaneous direction of the relative velocity
between the free stream and the oscillating cylinder and another
normal to this direction. For that purpose, we use experimental
measurements of the fluid forces and body displacement of
an elastically-supported circular cylinder undergoing vortex-
induced vibration. In the next sections, we describe the
experimental facility, the measurement techniques and the data
processing methods, followed by the presentation of the results
and discussion of the key findings from the present analysis.

2. MATERIALS AND METHODS

2.1. Experimental Facility and
Measurement Techniques
The experiments were conducted in the free-surface recirculating
water channel of the FLAIR group atMonash University. The test
section of the water channel has dimensions of 0.6 m (width) ×
0.8 m (height) × 4 m (length). The background turbulence level
in the test section is below 1%. A cylinder was elastically mounted
from above the free surface on a low-friction air bearing system
as shown in Figure 1. The cylinder was made from carbon fiber
tubing and was rigid; its outer diameter was D = 25 mm and
its immersed length was L = 620 mm, giving an aspect ratio of
L/D = 24.8, which is sufficiently large to avoid effects from the
cylinder end. The ratio of the oscillating mass to the displaced
fluid mass was m∗ = 3.0. A raised platform at the bottom of the
water channel with a gap of approximately 1 mm to the bottom
end of the cylinder was employed to promote parallel vortex
shedding. The natural frequency of the systemwas determined by
individual free-decay tests in both quiescent air (fN air = 0.835
Hz) and water (fN water = 0.717 Hz). The structural damping
ratio measured in still air was 3.5 × 10−3. Measurements were
made over the range of free-stream velocities from 43.1 to 260.4
mm/s corresponding to Reynolds numbers in the range from
1,250 to 7,550 and reduced velocities in the range 2.4 ≤ U∗ ≤
14.5, where U∗ = U∞/fN water D is the reduced velocity based
on the natural frequency of the structure in still water.

The displacement of the freely-vibrating cylinder was
measured using a non-contact magnetostricitive linear variable
differential transformer (LVDT) while the streamwise and
transverse components of the hydrodynamic force acting on the
cylinder were simultaneously measured using a high-accuracy

FIGURE 1 | Schematic of the experimental facility.

two-component force balance. For the transverse component, the
inertial force due to the cylinder’s acceleration was taken into
account to recover the instantaneous fluid force. More details
and validation of the experimental rig and techniques are given
in Nemes [13] and Zhao et al. [14–16]. The time series of the
displacement, y(t), streamwise, Fx(t), and transverse, Fy(t), force
components were collected over 300 s at a sampling rate of 100
Hz yielding 3× 104 samples per channel.

2.2. Data Processing
The instantaneous components of the total hydrodynamic force
in the direction of the free stream and normal to the free
stream, Fx and Fy, respectively, were directly measured with the
force balance. The damping or drag force, FD, is defined as the
component of the total hydrodynamic force aligned with the
time-dependent vector of the relative velocity of the cylinder
as it oscillates transversely with respect to the free stream. The
excitation or lift force, FL, is defined as the complementary
component of the total hydrodynamic force normal to the drag
component. This approach is customarily employed for flows
around aerodynamic bodies but not so frequently for flows
over bluff bodies. The instantaneous drag and lift components
were obtained from the directly-measured components by a
transformation from the laboratory (fixed) frame of reference to
one attached to a cylinder as it would move with the same relative
velocity through still fluid, using the following formulas

FD = Fx cosϑ − Fy sinϑ , (4)

FL = Fx sinϑ + Fy cosϑ , (5)

where ϑ = tan−1
(

ẏ/U∞
)

defines the instantaneous angle
of the relative velocity vector. The instantaneous velocity of
the cylinder was computed by numerical differentiation of the
displacement, ẏ(t) = dy/dt. The signal from the displacement
sensor was first low-pass filtered to avoid propagation of errors
due to measurement noise in the computed velocities. In order
to calculate the rate of work of the drag and lift components on
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the oscillating cylinder, their projections on the y-axis were also
computed from the following relationships

FDy = −FD sinϑ , (6)

FLy = FL cosϑ . (7)

In the presentation of the results, the displacement is normalized
by the cylinder diameter, forces are normalized by 0.5ρU2

∞DL,
and rates of energy transfer by 0.5ρU3

∞DL. The reduced velocity
is based on the natural frequency of the structure in water.

3. RESULTS

The VIV response as a function of the reduced velocity is shown
in Figure 2. The mean amplitude, which is taken as

√
2 times the

standard deviation of the displacement signal, is juxtaposed on
the envelope bracketing the minimum and maximum amplitude
recorded at each reduced velocity. Based on the variation of
the response amplitude, we have identified the ranges of the
typical response branches as listed in Table 1. We have included
a separate transition region from the upper branch to the lower
branch in which we observed intermittent switching between the
corresponding dynamic modes. The envelope of amplitudes is
relatively wider and narrower in the upper and lower branches,
respectively. The breadth of the envelope characterizes the
amplitude modulations in the displacement signal, which is
indicative of the variant dynamics in the upper and lower
branches. The variation of the response frequency as a function
of the reduced velocity (see Figure 2) displays more complex
variation than the response amplitude, thereby indicating more
subtle differences of the dynamics in various sub-ranges of the

FIGURE 2 | Variation of the response amplitude, A∗, and frequency, f∗, with

the reduced velocity, U∗.

main response regions, which will not be examined further for
brevity. The mean amplitude and the mean frequency obtained
from the present study as a function of the reduced velocity both
agree well with previous works at comparable mass and damping
ratios (see e.g., [17]).

Here, the response frequency was taken as the inverse of the
mean period of the peak-to-peak oscillations in the displacement
signal. With this method, it is possible to discern cycle-to-cycle
variations in the frequency and thereby identify possible mode
competitions. For instance, the transition from the upper to
the lower branch of response involves a simultaneous change
from relatively low-amplitude and high-frequency oscillations
to relatively high-amplitude and low-frequency oscillations.
Figure 3 shows the cycle-to-cycle variation of the oscillation
amplitude and frequency at U∗ = 6.8, which corresponds to the
transition region.

In the following, results at four reduced velocities ofU∗ = 4.3,
5.5, 6.8, and 8 will be employed to showcase the characteristics
in the initial, upper, transition, and lower branches of response,
respectively. Figures 4, 5, respectively, show time series of the
drag and lift components of the instantaneous hydrodynamic

TABLE 1 | VIV branches obtained from the variation of the response amplitude

with reduced velocity.

Branch name Range Feature

Initial U∗ < 4.7 Increasing amplitude

Upper 4.7 ≤ U∗ ≤ 6.6 High amplitude

Transition 6.6 < U∗ < 7.0 Intermediate amplitude

Lower 7.0 ≤ U∗ < 10.5 Moderate amplitude

Desynchronization 10.5 ≤ U∗ Decreasing amplitude

FIGURE 3 | Cycle-to-cycle variations in the amplitude and frequency of

oscillations in the displacement signal at U∗ = 6.8.
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FIGURE 4 | Time series of the drag component at different reduced velocities:

(A) U∗ = 4.3 (initial branch), (B) U∗ = 5.5 (upper branch), (C) U∗ = 6.8

(transition), and (D) U∗ = 8 (lower branch).

force at the selected reduced velocities. The drag displays
fluctuations about a non-zero mean level whereas the lift displays
fluctuations about the zero level. The amplitude of fluctuations
of both components appears to be correlated with the amplitude
of cylinder oscillation, a point which will be addressed further
below (see section 4.1). At U∗ = 6.8, the transition from the
lower-branch mode of low drag to the upper-branch mode of
comparably high drag can be noticed. Another interesting feature
is that fluctuations of both drag and lift components are more
regular than the corresponding fluctuations of the streamwise
and transverse components (not shown here for economy of
space), i.e., magnitude modulations are less pronounced.

Figure 6 presents spectral distributions of the drag and
lift components, which were obtained using the Fast Fourier
Transform (window-averaged). The instantaneous drag
fluctuates at twice the frequency of cylinder oscillation whereas
the instantaneous lift fluctuates at the frequency of cylinder
oscillation. The fluctuations of both components are nearly pure
tone but some small-frequency modulations of the drag are
evident at U∗ = 4.3 and 6.8. At U∗ = 6.8, a band of increased
power on the right-hand-side of the main spectral peak reflects
the bistable dynamics governing the transition between the
lower-branch and upper-branch modes.

The energy transfer from the fluid to the cylinder is one
of the most important output variables in the present study.
The instantaneous rate of energy transfer from the fluid to the
structure can be calculated as Ėstruct(t) = Fy(t)ẏ(t). Figure 7
shows Ėstruct(t) time series for different reduced velocities. It can
be seen that Ė(t) oscillates between negative and positive values
about approximately the zero level for all reduced velocities.

FIGURE 5 | Time series of the lift component at different reduced velocities:

(A) U∗ = 4.3 (initial branch), (B) U∗ = 5.5 (upper branch), (C) U∗ = 6.8

(transition), and (D) U∗ = 8 (lower branch).

Apparently, the average energy transfer (over a number of
oscillation cycles) must be positive in VIV to overcome the
energy lost via the action of structural damping. However,
the amount of energy required to sustain the oscillations is
very low if the structural damping is very low. The time
histories of the energy-transfer rate that are plotted in Figure 7,
display differences between the response branches. In the initial
(U∗ = 4.3) and upper (U∗ = 5.5) branches, Ėstruct(t) displays
considerable modulations whereas the modulations are relatively
weak in the lower branch (U∗ = 8). At U∗ = 6.8, we can
notice the transition from the lower-branch mode (relatively
weak modulations for t < 40 s) to the upper-branch mode
(relatively strong modulations for t > 50 s). Such modulations
stem from corresponding modulations in both ẏ(t) and Fy(t),
which illustrate the non-linear coupling between the driving force
and the motion of the cylinder. This partly stems from the fact
that the energy transfer to the structure is only a small fraction
of the energy dissipated in the fluid, which will be quantified
further below.

The rate of energy transfer to the structure can be decomposed
into the rate of work done by the drag and lift components of the
force, which may be written as

Ėstruct(t) = ĖD(t)+ ĖL(t) (8)

where ĖD = ẏj · FD = ẏFDy and ĖL = ẏj · FL = ẏFLy.
Figure 8 shows time series of ĖD(t) (colored blue) and ĖL(t)
(red) at selected reduced velocities. First, it can be seen that both
ĖD(t) and ĖL(t) display oscillations which are closely related,
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FIGURE 6 | Spectra of the drag (left column) and lift (right column) at different reduced velocities: (A,B) U∗ = 4.3 (initial branch), (C,D) U∗ = 5.5 (upper branch), (E,F)

U∗ = 6.8 (transition), and (G,H) U∗ = 8 (lower branch).

e.g., amplitude peaks appear as mirrored. The instantaneous rate
of energy transfer due to the drag component is negative at all
times and approaches zero at a point during each oscillation
cycle. Minimum absolute values of ĖD are of the order of 10−5.
The fact that ĖD(t) remains negative at all times demonstrates
that the drag component is a purely damping force in agreement
with the theoretical considerations laid down in the introduction.
This contrasts with ĖL(t), which is positive most of the time
but typically attains slightly negative values over a small portion
during each oscillation cycle. The most negative values of ĖL(t)
are comparable to the minimum values of ĖD(t) in the initial
branch (U∗ = 4.3). In the other cases (U∗ = 5.5, 6.8, and
8), the most negative values are quite small compared to the
maximum positive values of ĖL(t). The average of ĖL(t) is positive
at all reduced velocities. Therefore, we can conclude from the
above that the drag component only does negative work on
the oscillating cylinder whereas the lift component mostly does
positive work.

The average rate of energy transfer, or rate of work, over a
sufficiently large period of time T can be calculated as

〈Ė〉 =
1

T

∫

T
Ėdt. (9)

Figure 9 shows the variation of the average rate of negative work
done by the drag component, 〈−ĖD〉 and the average rate of
positive work done by the lift component, 〈ĖL〉. Over the entire
reduced velocity range, 〈−ĖD〉 and 〈ĖL〉 are nearly equal. The
average rate is high in the upper branch, moderate in the lower
branch, and low in initial branch while it is negligible for low and
high reduced velocities where desynchronized oscillations occur.
The difference 〈ĖL〉 − 〈−ĖD〉 yields the average rate of energy
transfer to the structure, 〈Ėstruct〉, which is very low compared to
〈−ĖD〉 and 〈−ĖL〉.

4. DISCUSSION

4.1. Excitation Coefficient
We have noted in the results that the magnitude of the unsteady
lift component seems to be correlated with the amplitude of
cylinder oscillation. We will denote CL to be the mean magnitude
of the unsteady lift. Returning to Equation (3), we may note that,
for a hydro-elastic system of given mass ratio, m∗, and damping
ratio, ζ , the excitation coefficient in-phase with the velocity of the
cylinder, Cv, is proportional to A∗f ∗/U∗2. Figure 10 shows the
variation of CL (instead of Cv) as function of A∗f ∗/U∗2. It can
be clearly seen that CL is also proportional to A∗f ∗/U∗2 as Cv is
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FIGURE 7 | Time series of the rate of energy transfer from the fluid to the

structure at different reduced velocities: (A) U∗ = 4.3, (B) U∗ = 5.5, (C) U∗ =
6.8, (D) = 8.

FIGURE 8 | Time series of ĖD(t) (colored blue) and ĖL(t) (red) at different

reduced velocities, (A) U∗ = 4.3, (B) U∗ = 5.5, (C) U∗ = 6.8, (D) U∗ = 8.

expected to be from the linear theory. We can thus write

CL ∼
A∗f ∗

U∗2 . (10)

As seen in Figure 10, the proportionality factor (slope of the line)
is higher for data that correspond to the initial branch than for
data in all other remaining branches. A separate straight line is

FIGURE 9 | Variation of the average rate of work done by the drag and lift

components of the hydrodynamic force, 〈−ĖD〉 and 〈ĖL〉 respectively, with the

reduced velocity, U∗.

fitted to the data in the initial branch. The data in the upper and
lower branches collapse very well on another straight line. Both
lines provide excellent fits to separate data zones. The difference
in the proportionality factor might be attributable to the different
dynamics in the initial branch (beating oscillations) and in the
upper and lower branches (synchronized oscillations) [18]. That
is, the linear theory might be less accurate in the initial branch.
To recapitulate, the lift not only is the sole component that can
provide fluid excitation as shown above, but also displays the
same scaling with A∗f ∗/U∗2 as the linear theory (Equation 3)
predicts for the traditional excitation coefficient in-phase with the
cylinder velocity, Cv.

The above result is not trivial because Cv is the hydrodynamic
coefficient in-phase with the velocity of the oscillating cylinder
whereas CL is the hydrodynamic coefficient of the lift component
acting normal to the instantaneous vector of the relative velocity
between the oscillating cylinder and the free stream. That is,
Cv includes the net contribution due to fluid excitation and
fluid damping whereas CL represents pure fluid excitation.
Arithmetically, CL is two orders of magnitude higher than Cv,
whose value is very sensitive to the phase of the driving force
with respect to the motion (phasor). Equation (3) shows that
Cv is a linear function of m∗ and ζ , i.e., Cv depends on the
mechanical properties of the hydro-elastic system. However, CL

does not represent a phasor but rather a directional component
of the actual hydrodynamic force on the oscillating cylinder
and, therefore, may be expected to depend only on fluid-
dynamical parameters, i.e., on the normalized amplitude and
frequency as well as on the Reynolds number. It may be
even insensitive to whether the motion is free (self-excited)
or forced.

The above arguments can be supported by comparing CL

from configurations with different mass and damping ratios.
However, in previous works a lift coefficient that represents the
magnitude of the unsteady transverse force is usually reported.
For clarity, the traditional lift coefficient will be denoted Cy.
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FIGURE 10 | Variation of the mean magnitude of the unsteady lift, CL, with the combined parameter A∗f∗/U∗2 (circles). Red-filled circles correspond to data from the

initial branch while blue-filled symbols correspond to all other branches. Square symbols show the variation of the magnitude of the transverse force, Cy (see text).

Note that Cy =
√

C2
v + C2

a. The lift coefficient defined here,
CL, where the lift changes direction with the cylinder oscillation,
has not been reported previously. Figure 10 includes our Cy data

against the combined parameterA∗f ∗/U∗2. Overall, the variation
of Cy is far more complex than that of CL and does not show
a correlation with the scaling factor, therefore is more difficult
to decipher. However, it can be readily seen that Cy exhibits
distinct trends in each response branch. In the upper and lower
branches, CL generally is much higher than Cy by up to a factor
of 5 in the middle of the upper branch whereas CL ≈ Cy in the
initial branch.

An early experimental study by Diana and Falco [19] is
a particularly useful source of data to compare with for
reasons that will become clearer below. Diana and Falco
[19] measured with a dynamometer the forces on a flexibly-
mounted rigid cylinder undergoing vortex-induced vibration
in a stream of air. The mass and damping ratios were
not quantified but it is expected that m∗ = O(100)
in air and they reported that damping was as low as
possible in order to reach oscillation amplitudes above 0.7
diameters. From their measurements, they formulated an
empirical expression that may be written in the present
notation as

CL = 4.5
A∗

(U∗S)2
, (11)

where S is the Strouhal number. In fact, Diana and Falco [19]
employed the velocity ratio r = 1/(U∗S) to compile their data.
Equation (11) suggests a slightly different scaling of the lift
coefficient than Equation (10) does. It should be remembered
that [19] actually measured the magnitude of the transverse
force, Cy. Nevertheless, the utility of Equation (11) is that it
provides a scaling factor against which we can compare the

present data. Figure 11 shows a plot of CL using the scaling
from Equation (11). A best linear fit to data including all
response branches from the present study yields a proportionality
factor of 3.5 that may be compared to the value of 4.5 in the
empirical formula in Equation (11). However, their empirical
formula (Equation 11) fits the present data quite well at low
values of the scaling parameter, A∗/(U∗S)2, it particularly fits the
data in the initial branch well. A linear best fit to the present
data in the initial branch only yields a slope of 4.6, which
essentially coincides with the empirical formula by Diana and
Falco [19]. This coincidence may be explained by the fact for
a mass ratio of the order of 100, the VIV response does not
display the upper branch [4]. It is also evident from their plot
of the lift coefficient, Cy, with the normalized amplitude (their
Figure 13) that the factor of 4.5 refers to data at amplitudes less
than 0.4, i.e., amplitudes that correspond to the initial branch
in the present experiments. The best linear fit to all our data
passes through the data in the upper branch but it works less
satisfactorily in the initial and lower branches. Furthermore, it
should be noted that the data in the lower branch also follow
a linear trend very well with a slope slightly lower than 4.5.
The Reynolds number for their experiments varied in the range
2 × 103 − 6.5 × 104, i.e., the lowest Re number in their tests
is approximately twice as high as that in our study and their
highest Re is also higher by an order of magnitude. Therefore,
the Reynolds number may be contributing but its effect appears
to be small. Overall, the collapse of the data in the plot of CL

againstA∗/(U∗S)2 is clearly better than that againstA∗f ∗/U2, the
physics behind this may warrant some further investigation. The
agreement between the empirical formula by Diana and Falco
[19] obtained from measurements in air (i.e., m∗ of the order
of 100) with the trend of the data from present measurements
obtained in water (m∗ = 3), barring differences that have
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FIGURE 11 | Variation of the mean magnitude of the unsteady lift, CL, with the

combined parameter A∗/(U∗S)2. The solid line is a best linear fit to all our data

that are indicated by the symbols, from VIV measurements in water. The

dashed line is an empirical expression developed by Diana and Falco [19] from

VIV measurements in air.

FIGURE 12 | Time series of the rate at which energy is dissipated in the fluid

at different reduced velocities: (A) U∗ = 4.3, (B) U∗ = 5.5, (C) U∗ = 6.8, (D)

U∗ = 8.

been accounted for, provides evidence that the present excitation
coefficient, CL, is independent of the mechanical properties of
the system.

4.2. Effective Drag Coefficient
The energy transferred from the fluid to the structure
is eventually dissipated in the structural damping. The
structure itself also causes energy dissipation in the fluid
whose instantaneous rate is given by Ėfluid(t) = FD(t)U(t).
We may assume that if there were no structure placed

FIGURE 13 | Variation of the mean, effective, and apparent drag coefficients

with reduced velocity.

in the free stream, there would be no dissipation in the
fluid. Figure 12 shows the corresponding times series of
Ėfluid where it can be seen that Ėfluid is fluctuating but
is always positive, in contrast to Ėstruct (cf. Figure 7).
Konstantinidis [11] defined an effective drag coefficient
that represents the average rate of energy dissipation in the
fluid as

CDeff =
〈Ėfluid〉

0.5ρU3
∞DL

. (12)

Figure 13 shows the variation of the effective drag coefficient,
CDeff, along with the mean drag coefficient, CDmean, which is
the mean of the drag component aligned with the instantaneous
relative velocity, and the apparent drag coefficient, CDapp, which
is the mean of the streamwise force, i.e., the usual mean drag
coefficient. The apparent drag coefficient, CDapp, attains a peak
value of 2.5 at U∗ = 5.2, a value that can be compared to
that reported by Khalak and Williamson [4]; they found a peak
value of approximately 3.4 at a similar reduced velocity for a
system with a mass ratio of 10.1. CDmean varies in a similar
fashion as does CDapp with the reduced velocity but generally
CDmean takes lower values than CDapp does. The effective drag
coefficient, CDeff, is even lower than CDmean, which in turn is
lower than CDapp, particularly in the upper and lower branches.
For the low and high ends of the reduced velocity range where the
response amplitude is negligible, all three coefficients are equal.
CDeff attains a peak level at the end of the initial region followed
by a noticeable drop upon transition to the upper branch. Similar
drops have been previously observed in compilations of VIV
data from other studies (see [11]). This consistent finding implies
that the wake flow can dissipate energy more vigorously at the
end of the initial branch rather than at the start of the upper
branch, which might be attributed to the fact that the cylinder
oscillation and the vortex shedding are quasi-periodic in the
initial branch [18]. The effective drag coefficient, CDapp, attains
another local maximum in the middle of the upper branch where
the amplitude of cylinder oscillation is also maximum. Overall,
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the effective drag coefficient in comparison to the apparent
and the mean drag coefficients, does not change considerably
with the reduced velocity. This might indicate that there are no
vast changes of the wake flow in different response branches
in terms of the capacity to dissipate the kinetic energy of
the fluid.
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