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Radial drift o f  p lanetes imals  due to densi ty  wave interaction with the solar nebula  is considered.  
The  m e c h a n i s m  is mos t  effective for large masse s  and provides mobility over  a size range where  
ae rodynamic  drag is unimportant .  The  process  could shor ten  accret ion time scales to -O(105-106 
years)  th roughout  the solar sys tem.  Accumula t ion  stalls down when  growing objects  are mass ive  
enough  to open gaps in the gas  disk. Implicat ions of  this process  for current  cosmogonic  models  are 
discussed.  © 1984 Academic Press, lnc, 

I N T R O D U C T I O N  

Of many unresolved problems regarding 
the formation of  the planetary system, one 
of  the more perplexing is the question of  the 
accret ion time scale. Numerous  plausible 
mechanisms have been proposed for the 
rapid accumulation of  material from mi- 
cron-sized particles to sublunar planetesi- 
mals (see Wetherill (1980) for  an excellent 
review). Although agreement  on the spe- 
cifics of  these processes  is by no means uni- 
versal, there is a reasonable expectat ion 
that a basically correct  approach could be 
found among those being studied. On the 
other  hand, the final stage of  accretion,  i.e., 
the growth to planetary size, presents  more 
difficulty. 

This difficulty is partially rooted in the 
basic length scales that can be associated 
with a particle disk of  surface density o-. An 
orbiting mass, m, has a range of  strong 
gravitational influence of  order  h - (Gm/ 
f~2)v3, where ~ is its orbital f requency.  If  
one sets m - o-}` 2, i.e.,  the amount  of  disk 
material bounded by this range, h becomes 
the basic length scale for  gravitational in- 
stability, }̀ 1 ~ Go-~l) 2 (e.g., Safronov,  1969; 
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Goldreich and Ward, 1973). This is the di- 
ameter  of  fragments of  the disk that can 
contract  due to self-gravity (provided the 
particle dispersion velocity is sufficiently 
low). The maximum mass associated with 
this process  is ml - G2o-3/~~ 4. I f  the mass of  

• the debris disk, MD, is spread out more or 
less uniformly, o- - MD/r 2, then the number 
of  fragments should be at least N1 >~ MD/ml 

(M®/MD) 2, where the substitution, f l  2 
GMo/r 3, tbr a Keplerian disk, has been 
made. In the inner solar system, for exam- 
ple, 310 ~ O(1028 g) and N~ > l01°. 

The differential rotation of  the disk pro- 
motes further  growth once breakup begins 
by allowing fragments of  similar heliocen- 
tric distances but initially random azi- 
muthal angles to gradually drift into prox- 
imity. Using material in an annulus of  width 
},2 as the characteristic mass, rn~ - o-r },z, 
the gravitational range becomes h2 ~ (Gin2~ 
~')2)1/3 __ (rhl)1/2 ~ (rGo-/~,~2)l/2. This is a sec- 
ond length scale associated with such a 
disk. For  uniform o- throughout  the region, 
strong gravitational encounters  can be gen- 
erated by differential motion alone (i.e., 
even with orbits of  zero eccentricity) as 
long as the number  of  objects N2 >~ Mo/m2 

(MUMD) I/2. In the inner solar system, N2 
> O(102) and m2 - O(102 5 g). Considerable 
effort  has been (and continues to be) ex- 
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pended in describing aspects of particle 
growth throughout this size range. Not all 
details are agreed upon even by proponents 
of this accretion model, but one dominant 
trait characterizes these processes: strong 
gravitational encounters are virtually u n -  

a v o i d a b l e  and thus provide the most essen- 
tial ingredient to the accumulation of mate- 
rial. 

Once growth proceeds beyond mz the sit- 
uation changes in a significant way. Differ- 
ential semimajor axes become large enough 
that appreciable radial excursions must be 
performed to generate continued close en- 
counters. If the average surface density re- 
mains essentially unchanged (i.e., there is 
no systematic radial migrations) necessary 
excursions must be accomplished via or- 
bital eccentricities. Eccentricities can be 
produced by gravitational scattering among 
planetesimals, i.e., near misses. This gravi- 
tation relaxation of the disk leads to compa- 
rable orbit inclinations as well, so that the 
spatial density of solid material decreases 
as the particle disk thickens, p ~ o-/h ~ o-1)/ 

v, where h is the scale height of the particle 
disk with dispersion velocity v ~ O [ ( e , l )  × 

r~l]. However, since the accretion rate is 
determined by the mass flux, p v ,  this quan- 
tity is relatively insensitive to v provided it 
is (a) large enough to actually ensure colli- 
sions (v > r l ~ / N )  and (b) not much smaller 
than a typical planetesimal's escape veloc- 
ity [re - (Gpp)l/2(mD/ppN)l/3]. This latter 
condition implies that gravitational focus- 
ing is minimal. Under these conditions the 
growth rate of the planetesimal's radius is 
simply of order d R / d t  - o - ~ ~ / p p ,  where pp is 
the object's body density. For uniform cr in 
the terrestrial zone, d R / d t  ~ 10-102 cm/ 
year, implying an Earth growth time of 
-107 years. In the outer solar system sur- 
face densities of accretable matter (which 
include ices in this region) are not too dif- 
ferent, but the longer orbital periods push 
the formation times up one to two orders of 
magnitude, precariously close to the total 
age of the solar system. These numbers are 

found using the minimum possible disk 
mass to estimate the surface density. A 
larger o- will obviously shorten accretion 
times, but if the particles are assumed uni- 
formly distributed this will also imply mass 
in excess of the observed condensible con- 
stituents in the planetary system. Of 
course, no one expects the accretion event 
to be particularly efficient, but requiring the 
disposal of excess debris, say 10-102 times 
the current planetary masses, seems to us 
rather dubious. 

Aside from the long time scales, there is 
another fundamental complication with this 
model. As the planetesimal size progresses 
beyond the second characteristic mass, m2,  

close encounters (may) cease to be inevita- 
ble. Near misses are contingent on the exis- 
tence of the very orbital eccentricities they 
are designed to produce. This raises the 
question of whether such a system may be 
susceptible to "run-down,"  i.e., if eccen- 
tricities are once damped too low it may not 
be possible to regenerate them. This could 
terminate accretion at a premature stage, 
i.e., more numerous and smaller planets 
than observed (e.g., Wetherill, 1980). In- 
deed, it is in essence the run-down point 
that defines the end of this process. This 
point is a consequence of the relative exci- 
tation and damping mechanisms brought 
into play. Current modeling efforts center 
on devising numerical experiments in 
which increasingly sophisticated renditions 
of impacts, scattering, gas drag, etc., are 
incorporated in an attempt to test whether a 
"solar-system-like" configuration is a plau- 
sible outcome. 

R A D I A L  D R I F T  

It is clear from the preceding discussion 
that the surface density o- is the key param- 
eter determining the behavior of the sys- 
tern. Its value could be increased locally 
without putting excess mass into the sys- 
tem only if the assumption of uniform dis- 
tribution is relaxed. A nonuniform distribu- 
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tion could, of course, be derived from an 
initially uniform one by radial migration, in- 
creasing tr in some regions while decreasing 
it in others. 

A e r o d y n a m i c  Drag  

A familiar mechanism capable of produc- 
ing radial drift is that of aerodynamic drag 
(e.g., Whipple, 1972; Weidenschilling, 
1977). Radial pressure gradients in the gas- 
eous solar nebular affect its orbital velocity 
by slightly modifying the centripetal accel- 
eration. As a result of drag interactions 
with the more slowly orbiting nebula, a par- 
ticle spirals toward the Sun at a rate 

? 2y12(11 -- 12g) 
"7 ~ ,y2 + 122 ' ( 1 )  

where 12 - 12g is the differential mean mo- 
tion between the gas and a local Keplerian 
velocity field and y = F/mug, where F is the 
drag force induced by gas flowing by with 
relative velocity, og. If we assume a pres- 
sure gradient of order dP/dr  ~ -C2pg/r 
where c is the sound speed, then 12 - 12g 
- (21)pr ) - ldP/dr  ~ ½12(c/r12) 2. The minimum 
decay time, which pertains to particles such 
that y = 11, is "/'rain = (12 --  ~'~g)-I ~ 0 ( 1 0  2) 

years. Such particles are -0(10-10  2 cm) in 
size and very mobile. If a larger object with 
relative orbital stability were to simply 
sweep up an inward flux - r2or/'rmin of small 
particles, growth to planetary scale, Mp, 
could occur in as little as ~ "rmin(Mp/MD) 
O(10  2 years). However, as particles grow, 
they become increasingly decoupled from 
the gas. For large particles, Y ~ 11, the 
characteristic orbital decay time is z = r/? = 
T-I (r~/c)  2, i.e., 

32 (rlql3 (ppR) 
Tdrag ~" T (CD12)-I \ c /  ~ (2) 

where F has been written in terms of the 
drag coefficient, CD, through the relation F 
= CD½pgO2g'n'R 2. At 1 AU with c ~ 7.6 x 
104T~ n cm/sec, trg ~ 103 g/cm2, pp ~ 3 g / c m  3, 

a n d  C D ~ 0 . 4 4 ,  Eq. (2) yields 7 ~ 7 × l07 
Rkm T23/2 years where Rkm is the planetesi- 
mal's radius in kilometers and the tempera- 
ture of nebula is T = 1"2 × l02 °K. Since the 
time scale for the disk to convert to objects 
of size ml through gravitational instability is 
_12-1, particles drift only ~ 1 0  -3 AU in the 
interim. Further growth to m2 in ~ l03 years 
allows only similar orbital decay, at which 
point the objects are effectively decoupled 
from the gas phase (i.e., Zdrag > O(10  9 

years)). 
If turbulence prevents the disk from 

clumping due to self-gravity, but accretion 
still proceeds by panicle impacts, the 
growth rate is of order R > O(or12/pp)  ~ 10 
cm/year. Consequently, the time interval 
over which the particles' size remains of 
order R is - 1 0  4 Rkm years, much less than 
that required for appreciable orbital decay. 
If impacts are energetic enough to prevent 
even individual particle growth, it is not 
clear what prevents virtually all material 
from drifting into the primordial Sun--i.e., 
the development of only -<O(10) accreting 
centers seems contrived. Again a charac- 
teristic scale comparable to planetary di- 
mensions is not evident in this mechanism. 

Tidal Drif t  

A mechanism that can provide mobility 
for objects larger than m2 would have con- 
siderable appeal as an alternative route to 
planetary accumulation. Mobility seems 
achievable through recently studied plan- 
et-disk tidal interactions which have 
proved successful in explaining observed 
features in planetary rings (e.g., Cuzzi et 
al., 1981; Shu et al., 1983). The gravity field 
of a planetesimal perturbs the Keplerian 
flow of the gaseous disk. Perturbations be- 
come most pronounced at Lindblad reso- 
nances. Near the planetesimal the reso- 
nances become dense and their effects 
overlap. For many applications a reason- 
able approximation to their cumulative in- 
fluence is provided by a continuous expres- 
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FIG. 1. Ratio of angular momentum flux from a reso- 
nance to the flux calculated from a WKB approxima- 
tion. Solid curves are cases calculated by Goldreich 
and Tremaine (1980). Dashed curved shows the simpli- 
fied torque cut-off rule used here. Q is the Toomre 
stability parameter, cO/~Go-. 

sion for the torque density (Lin and 
Papaloizou,  1979); 

d T  9 f  G2m2rtyg 
dr 4 ( 4  ---~-~g) 2x2 sgn(l)p - l~g). (3) 

This fo rm breaks  down at distances,  x, less 
than about  a scale height. [Inside that dis- 
tance we simply assume a constant  torque 
density equal to Eq. (3) evaluated at x = h ,  

1.5 c/~). This provides the same total 
torque for a constant  density disk as one 
obtains summing over  Lindblad reso- 
nances.  Figure I shows a compar ison  of 
this model  with the torque density profile 
derived by Goldreich and Tremaine  (1980). 
We chose  f = 2.5 in order  to match their 
express ion at large x / h , . ]  The planet experi- 
ences a net drift if outer  and inner disk 
torques do not exact ly  cancel. For  exam- 
ple, a density profile of  the form cr ~ r k. 
integrated over  the disk gives, to lowest or- 
der in (kh/r) ,  a drift velocity of  order  

(OVgr2~ ( L )  2 m 
k ~ 4 f k ( r l I )~  \-M-~c-~/ M ~  (4) 

provided the local s t ructure of  the disk is 
not itself substantially modified by the 
torque. We shall return to this point pres- 
ently. [In Eq. (4), ~ is a dimensionless con- 

stant less than but of  order  unity that takes 
into account  the general pressure gradient 
in the disk associa ted with the assumed 
density profile. This gradient shifts the po- 
sitions of  the Lindblad resonances  in such a 
manner  as to oppose  the planetesimals '  
drift somewhat .  Hence ,  Eq. (4) can be con- 
sidered correct  only as to its order  of  mag- 
nitude.] Equat ion (4) implies a characteris-  
tic drift t ime at 1 AU of  order  ~'TD -- r/k ~ 2 
X 1017 T2 (kJ~ppR3m) -! years.  Note  that 
larger masses  become  m o r e  mobile because  
the strength of  the d isk-planet  torque de- 
pends on m 2. Tidal and drag time scales are 
comparable  for objects  of  order  Rkm -- 3 X 
102 TSz/8p~l/2(fk~) -1/4 or m - 1 × 1023 
p 112gLCS.%-3/4T15/8 o vv~) ,2 g. Consequent ly ,  rapidly 
formed sublunar-sized objects,  m2, dis- 
cussed earlier, will have already bypassed 
the size regime dominated by drag effects. 

Since growth can occur  by the sweeping 
action of  the largest and, thus, fastest  ob- 
jects ,  the characteris t ic  growth time should 
be of order  7 - m/rh ~ m"CTD/r20" ~ (m/  
MD)'rTD, i.e., 

l I  ' ( h , ] z ( M o ] 2 (  o ' ]  
"/ 'growth ~ 4 " ~  \ r I \MDI \O'g/"  (5)  

For  the inner solar sys tem with M D  --  10 28 

g, tr/Crg ~ 10 2 and r ~ 1 AU, Eq. (5) yields 
2 x l0 g T2/ fk~  years;  for the outer  solar 

sys tem with M D  ~ 3 × 1029 g, ~r/O-g - 10 i 
and r - 30 AU, Eq. (5) predicts ~ 1 x 106 

T2/ fk~  years.  

MASS LIMIT 

The format ion of  both Jupiter  and Saturn 
predated nebula loss, so that a gas-flee en- 
vi ronment  must  not be essential for accre- 
tion. The rapid drift and possible growth 
rates due to density waves  indicate that 
such an envi ronment  may not only be un- 
necessary ,  it may actually be unlikely. 

Howeve r ,  al though the ability of  large 
objects to migrate rapidly through the neb- 
ula potentially alleviates the time scale 
problem associated especially with the 
outer  planets,  it introduces another  prob- 
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lem: without a limiting mechanism, a "first- 
f o rme d"  planetesimal should simply sweep 
the entire disk. Of course,  the direction of  
drift depends on the sign of  the density gra- 
dient, so that an object  could be trapped at 
position of  minimum gas density in the neb- 
ula. However ,  there is no convincing rea- 
son (presently known) to believe that the 
initial radial density profile of  the nebula 
would have (several) such features.  On the 
other  hand, it is quite possible that the neb- 
ula is significantly modified by the same 
planet--disk torques that cause drift. Since 
the planetesimal " r e p e l s "  the disk on either 
side of  its orbit, this torque tends to open a 
gap. Once opened,  the gap can stabilize the 
planet relative to the disk, terminating drift. 

The ability of  an object to open a gap 
depends on its mass and on conditions in 
the disk. We discuss two mass limits that 
can be associated with gap formation. 

Viscous  L imi t  

If  density waves damp locally, a nonvis- 
cous disk per turbed by a stationary mass m, 
would evolve according to 

D d T  
D-~ (Sm/) = 8r d---~- (6) 

where 8m = 2zr~rgr~r is an annulus of  the 
disk, l = rZl~ is the specific angular momen- 
tum, and dT/dr  is the torque density. The 
solution to Eq. (6) if dT/dr  is approximated 
by Eq. (3) is a gap centered on the per turber  
that grows according to Wg = (5t/Tg) I/5, 

where wg is the half-width normalized to r 
and Zg is a characteristic time constant 

rg = ~r(f/x21)) -l.  (7) 

In deriving Eq. (7), modifications in the gas 
orbital f requency due to pressure gradients 
have been ignored as has the finite scale 
height of  the disk. The quantity /x is the 
planetesimal 's  mass normalized to the solar 
mas s. 

In the presence  of  viscous shear stresses 
in a Keplerian disk, a couple,  g ~ 3~'uo'rZ~, 
exists and one must add to the right-hand 
side of  (6) a term of  the form -SrOg/Or to 

account  for  the ability of  the gas to diffuse 
back into the gap. This viscosity may also 
lead to large-scale changes in the disk's 
structure and in particular to a radial flux, 
F. A steady-state solution for the gas profile 
near m is found by replacing the left-hand 
side of  (6) with 8m V • Vl -~ ~r F dl/dr. 
Without a finite scale height, the disk-  
planet torque becomes an impenetrable bar- 
rier to a radial flux. It is the torque cut off  
associated with nonzero h that allows for 
leakage through the barrier. In such a case 
the density never  goes completely to zero 
at x = 0. Neglecting changes that occur  
over  the scale r >> h, the solution for the 
surface density is 

h , 4 F  , 
Or : Or(o)e3W3~']/h'4 h- sgn(x) 3w 3 

{l -- e3W3dx'l/h'4}, [X'[ < h' 

Or = Or(o)e4(w/h') 3 Iw/x'l 3 _ F ,  x ,  e-lw/x'l 3 

+ F '  sgn(x) l e  (w/h')3 [1 - e3(w/h') 3] 

h '4 h,)le_l~/x,13 
g~w 3 ( i  - ~8) 

where F '  = F/67ru, h' -- h , /r ,  x '  = x/r, 

"f£' I = , [e (w/x ' )3-  l]dx' (9) 

and the normalized viscous gap half-width 
is 

w = ( r 2 / 9 z ~ , )  1/3. ( 10 )  

In obtaining Eqs. (8)-(10), the viscosity is 
assumed constant.  For  zero flux this sur- 
face density reduces to 

Or : Or(o)e 3w3[x'l/h'4 IX'I < h '  
= Or(o)e 4~w/h')3-1w/x'13 Ix'l > h ' .  (11) 

If  h'  > w the disturbance is too weak to be 
labeled a gap. This condition establishes a 
minimum mass necessary to open a gap in a 
nebula of  viscosity u: 

/-' ( h )  3 ' /2 

Nv MQ 

[Analogous formulae have been derived for 
possible moonlets embedded in Saturn 's  
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rings (Lissauer  et  al . ,  1981) although Voy- 
ager observa t ions  failed to detect  such ob- 
jects  inside prominent  gaps. Hence  some 
caution may  be warranted in accepting Eq. 
(12) without reservat ion.]  

Iner t i a l  L i m i t  

Equat ion (12) is clearly not valid at very 
low viscosi ty  because  radial drift of  the 
planetesimal  was neglected in its deriva- 
tion, i.e., even  for  v = 0 there is a critical 
nonzero  mass  required for gap formation.  
This is simply because  the time scale to 
open a gap as large as a scale height, 
- h  -rg/5, must  be less than the time to drift 
that distance,  - h / k .  Equivalent ly,  the mo- 
ment  of  inertia of  the planetesimal must be 
greater  than that of  the local port ion of the 
nebula with which angular m om en t um  is 
being exchanged.  This can be illustrated 
with a s traightforward example .  We again 
use Eq. (3) to represent  the torque density 
but will ignore any shift in resonance  loca- 
tions due to pressure gradients.  [This is a 
second-order  effect and its omission makes  
the problem especial ly tractable.  Although 
we bel ieve that this approximat ion  does not 
distort the qualitative behavior  too se- 
verely,  the reader  is caut ioned that this has 
yet to be rigorously demonst ra ted .  We do, 
however ,  t reat  f irst-order pressure gradient 
effects in the Appendix  and to this order  of  
accuracy  the behavior  described below re- 
mains qualitatively correct .]  

The equat ion of  motion for the disk re- 
ferred to a coordinate  sys tem centered on 
and moving with the per turber  drifting with 
velocity,  %, is 

0or 2rrr2or 
61rV Tx,  + 2~rrVpO- 7gx' 4 sgn(x) 

= 2~rrvvor a -- F (13) 

where  or0 is the unper turbed disk density,  
and F is the asymptot ic  flux observed  in the 
s tat ionary frame.  For  v ~ 0, F ~ 0 and the 
surface density is 

or = oro[ 1 -- sgn(x)r/OpT"gx '4] l 

Ix'l > h ' .  (14) 

For  Ix'l < h '  the torque cutoff  results in or(x) 
= or(h'). Substitution of  Eq. (14) into Eq. 
(3) and integration over  the disk replaces 
Eq. (4) with, 

27rr2Vp ( r )1/4 ( o-od z 
(15) 

V p -  m W-~g/ ) I - z 4sgn(z) 

where z - x ' ( o p ' r g / r )  TM. Assuming or0 = 
or(0)[l - kx '  + . . .], Eq. (15) can be inte- 
grated to give 

m 2 
rrorh 2 - H {Gi /h '  + kG2/H}  

= /x*(h', k, H) (16) 

w h e r e  n 4 = OpT"gh'4/r and 

l ( H - l )  i 
G I ( H )  = ~ l n  ~ + 9~c°t qH) 

2H I - - +  
H s - I 4X/2 

In 1 + N / 2 H + ~  

1 1l X/2 H ~ 
+ 9 ~  tan ~ ) ,  (17) 

I ( H ' -  - 1 t 
G 2 ( H )  = - ~ in \ ~ j  

H 6 i 
+ H8 ~ + ~ cot I(H2). (18) 

The velocity can be calculated f rom the re- 
lationship, 

Up = - -  - -  - -  Tg 77" h-7 

= (/~*H2) 2 / r f  (~orr2) 2 r[L (19) 

In the limit H--~ ~, Ix* ~ 0; /x*H 4 ----~ 4k; and 
Eq. (4) (with ~ = 1) is recovered.  Figure 2 
shows vp/v* as a function of  ~* where v* = 
¢rf(orr2/Mo)2rft .  The drift velocity increases 
with mass  (stable branch) up to a critical 
value. Past this point a stable solution does 
not exist, i.e., all objects will open gaps in 
the (v = 0) nebula. The lower curve indi- 
cates  a series of  unstable,  lower velocity 
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FIG. 2. Drift velocity as a function of planetesimal 
mass from Eqs. (16)-(19). 

solutions. A slight increase in the velocity 
will cause accelerat ion until a stable v is 
achieved. A slight decrease will result in 
decelerat ion until drift stops and a gap 
opens. The planetesimal cannot  escape 
from a gap once formed (as long as/x > / ~ ) .  
The inertial mass limit is thus 

, (~ro'h2~ 
/.J,i m /A, m a x \  MG / (20) 

where/X*ax is a function of  k and h'  that has 
a typical value - O(10-1-1). For  example,  
with k = 1.5, h' = 0.1;/Z*ax - 0.2 and mi 
0.6 o-h 2. Including first-order pressure 
terms (see Appendix) increases these val- 
ues somewhat.  An improved torque density 
model would also change these numbers.  
However ,  it seems clear that in the inner 
solar system/zi  can be - O ( 1 0  27 g) for rea- 
sonable nebula parameters .  In the outer  so- 
lar system, it is about  an order  of  magnitude 
or so larger. 

D I S C U S S I O N  

Density waves may furnish a radial mo- 
bility for  large planetesimals which relaxes 
the strict necessi ty for  large eccentricities 
to complete the accret ion process.  That,  to- 
gether with the fact that the accretion of  the 
giant planets was accomplished in a gas- 
eous environment ,  weakens the case for 
gas-free accret ion of  the terrestrial planets 
(unless convincing chemical evidence to 

the contrary  can be brought to bear). The 
much more rapid time scales associated 
with density wave assisted accretion fur- 
ther tighten this argument.  

The density wave device is a double- 
edged sword, however ,  since without a lim- 
iting mechanism, a single massive object 
would eventually sweep the entire disk. In 
fact, even a Jovian mass would have a char- 
acteristic orbital drift time of  only a few 
thousand years if the planet-disk interac- 
tion were not moderated in some way 
(Goldreich and Tremaine,  1980). Gap for- 
mation provides an effective way to termi- 
nate drift relative to the nebula and the 
masses associated with the inertial limit, for 
instance, are encouragingly close to re- 
quired planetary scale for reasonable neb- 
ula parameters .  However ,  the simplified il- 
lustration presented above assumes local 
damping of  density waves,  i.e., over  dis- 
tances < h. Damping mechanisms that have 
been suggested as effective in particle 
disks, such as viscous damping and/or 
shock development  in nonlinear waves 
(Goldreich and Tremaine,  1980) are less 
certain in a low mass gaseous nebula with a 
large Toomre  stability number,  Q = c211/ 
~-Go->> 1 (Ward, 1984). Undamped waves 
carry angular momentum to more remote 
regions of  the disk before deposition. This 
process  retards gap formation so that Eq. 
(20) is only a lower limit to the critical 
mass. Clearly a more realistic model of  lo- 
cal planet-disk interactions, including both 
pressure gradient effects and detailed treat- 
ments of  various wave damping mecha- 
nisms must be performed before the behav- 
ior of  such a system can be described with 
any reliability. Although such work is in 
progress,  we are content  here to provide 
only an order-of-magnitude assessment of  
these issues. 

We close this discussion by raising one 
more point of  interest. Even if a convincing 
argument for  the termination of  radial drift 
at or near planetary size can eventually be 
mounted,  the nebula is still in place and its 
removal  seems to pose some serious prob- 
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lems. Viscous shear stresses associated 
with the Keplerian motion of the disk are 
currently regarded as a likely method of 
disk dispersal (e.g., Cassen and Moosman, 
1982). Outward angular momentum trans- 
port results in a spreading of the more re- 
mote portions of the disk while most of the 
gas flows to the center and is presumably 
added to the solar mass (Lynden-Bell and 
Pringle, 1974). This process is assumed to 
occur contemporaneously with planetary 
accretion. This is in contrast to k'preaccre- 
tion disk theory"  models which often 
evoked a dispersal event following a rela- 
tively quiescent period for the nebula dur- 
ing which the planets, at least the giant 
ones, accumulated. [The most commonly 
proposed trigger for this ejection phase has 
been a T-tauri-like stage of solar evolution.] 
Its apparent freedom from such ad hoc as- 
sumptions is a compelling feature of vis- 
cous accretion disk models of the solar neb- 
ula. However, closer inspection reveals 
that this method of nebula dissipation may 
have its own difficulties, particularly when 
operating in conjunction with density 
waves. 

For shear stresses to be at all important in 
a global sense the nebula must be turbulent 
to some degree because molecular viscosity 
is too small to be a significant factor by sev- 
eral orders of magnitude. The characteristic 
time scale for viscous evolution of the neb- 
ula is rN -- r2/v, where u denotes an effec- 
tive turbulent viscosity. The degree of 
turbulence and, indeed, whether such 
turbulence can persist for a time rN, is an 
active subject of research. Several mecha- 
nisms for generating turbulence have been 
suggested (Cameron, 1978; Lin and Papa- 
loizou, 1980). The most convincing case to 
date is that made by Lin and Papaloizou 
who argue that grain opacity keeps the neb- 
ula unstable to convective overturn in the 
vertical direction and that the resulting gas 
eddies also couple radial motions over dis- 
tances comparable to a scale height. Some 
uncertainty exists, however, as to the 
strength and persistence of this process 

over times of order rN, since turbulence 
promotes grain coagulation which, in turn, 
drops the opacity (Weidenschilling, 1983). 
Nevertheless, examination of the ramifica- 
tions of various a s s u m e d  values for rN leads 
to the some interesting observations: 

(1) Mild turbulence such that tz~ < p,i may 
allow the inertial limit to operate and pre- 
vent a planet's overgrowth by an un- 
checked sweep of the disk. However, the 
implied nebula evolution time, rN > 
O[~)-11~,2(h/r) 3] ~ O(109 years), will be too 
long to account for disk dispersal. Further- 
more, as mentioned above, a case for local 
wave damping in a low viscosity disc must 
be made. 

(2) Disk evolution with rN - O(105 years) 
could, of course, simply suspend radial 
drift by removing the gas phase; but the 
timing would seem overly fortuitous to still 
allow the accretion process to proceed to 
the point of only O(10) objects. 

(3) The accumulation of Jupiter and Sat- 
urn must predate, or at least be contempo- 
raneous with, disk removal. These objects 
exceed ~ ifrN - O(105 years) and will open 
gaps, preventing further motion relative to 
disk material. Continued viscous evolution 
of the nebula will force these objects to suf- 
fer orbital decay (Ward, 1982; Hourigan 
and Ward, 1983). If uninterrupted by some 
intervening event, planetary material so 
locked into the momentum transport pro- 
cess of the gas disk may eventually drift 
into the primordial Sun. 

(4) lfrN < O(104 years), viscous diffusion 
will suppress gap formation even for the 
largest planets. However, disk-planet in- 
teractions are so powerful for a Jovian- 
sized object that the characteristic orbital 
drift time is only O(104 years) (Goldreich 
and Tremaine, 1980), again putting the sta- 
bility of the newly formed planetary system 
in considerable doubt. As an additional 
complication, one must account for the fail- 
ure of Uranus and Neptune to accrete sub- 
stantial amounts of hydrogen and helium 
during the nebula's lifetime. 

(5) Finally, although extremely vigorous 
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turbulence, i.e., rN ~ O(102-103 years) 
could remove the disk before severe 
changes in the giant planet orbits could oc- 
cur, such a short disk lifetime is clearly an 
inadequate interval for the accretion of 
planet-sized objects. Although one could 
rely on gas-free accretion to account for the 
terrestrial planets, we are left with no way 
to explain the accumulation of the giant 
planet cores. 

The above considerations indicate some 
of the difficulties in constructing a simple 
nebula model that satisfies all required con- 
straints. Although both density waves and 
viscous shear stresses are important and 
powerful processes that may (among other 
things) help explain planetary accretion and 
nebula dispersal, their incorporation into 
models of solar system origin is not without 
challenge. 

APPENDIX 

FIRST-ORDER TREATMENT 
OF PRESSURE GRADIENT 

Equation (6) can be written, 

2wro- ~ (r20) + v ~ (r211) = d--~-" (A1) 

Denoting the radial flux F = 2~rro-v and us- 
ing Or/Ot = 0 yield 

00 0(r2~) d T  
27rr3o---~ - + F 0-----7- - dr" (A2) 

From the continuity equation, 

Oo" 1 OF 
Ot - 27rr Or' (A3) 

whereas the gas orbital frequency, ~ ,  tak- 
ing into account the radial pressure gradient 
is 

c 2 0o- 
~-~2 ~ ~,~2 + _ _ _  (A4) 

ro- 0r" 

In (A4), 0 2 = G M e / r  3 is the Keplerian fre- 
quency; the horizontal pressure is assumed 
to satisfy the polytropic equation of state, p 
= Ko-~; and c 2 = yP/cr is the gas sound 
speed. Differentiating (A4) with respect to 
time, and substituting (A3) for Ocr/Ot yields 

Off c 2 a (1 acr] 
20 at - r Or ~ - ~ - /  

c 2 0 (  1 ' ~  F ) 
- r Or 2~r-ro- . (a5) 

In deriving (A5), variations in c z have been 
ignored. Incorporation of (A5) into (A1) 
then leads to 

r2o-c2 3 ( 1 ~_.~f) 0 d T  
2 ~  Or ~ + F-~r (r2~) = d--~" 

(A6) 

Finally, differentiating (A4) with respect 
to r, 

0--r-= - 2 7  ~ ~ T r  (A7) 

and combining with (A6), the radial flux 
equation reads, 

_ I  0 1 0 
2 crr2c2 ~rr (~-~ -~r ~ 

d T  
= n -d-7" (AS)  

The radial flux F is assumed first order in 
the disturbing torque. A first-order solution 
is found by substituting the undisturbed 
nebula surface density o-0(r) for ~r every- 
where on the left-hand side to give, after 
some rearranging, 

O2F [~__~ ln (ro.o)] OF 
Or z -~r 

0o-0]~ 

2a  d T  
- rc 2 dr" (A9) 

Equation (3) is used for dT/dr.  To this order 
of accuracy, undisturbed values are substi- 
tuted for all terms on the right. [Note, that 
shifts in the positions of the various 
Lindblad resources are thus not included in 
first-order treatment.] Finally, if we ignore 
slowly changing terms and retain only por- 
tions of (A9) that vary most strongly with x 
= r - rp, the problem simplifies to 
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FIG. 3. Comparison of calculated nebula distur- 
bances for zero-order and first-order pressure solu- 
tions. 

O2F (l~K)2 F 
OX 2 \ (" / 

9fGZ M2 ~o-o 
= - 2cZ(~Q p _ ~ ) 2 X  2 sgn(~]p -- ~)~). (AIO) 

(except inside Ix'] < h'  where x' is replaced 
by h'). For  c 4: 0, the solution to (A10)- 
(A12) is 

17" - -  O -  0 ~ 

1 
E4(~ c) sinh(x/h) 

1 ( I  - e ~)2 
+ e~ c .~lh 

2 ~4 
+ [.,./h 

J~ 

E41,~ 
(, 

I 
+ ~ (1 - e */%, 

sinh(t - x/h)t  4dt, 

e ( 
~4 sinh(x/h) 

x > h ,  

x "< h ,  

(AI4) 

Again, the right-hand torque density is 
valid only for x larger than about a scale 
height. The torque "cu t -o f f "  zone is more 
or less centered on the corotation point 
which lies at x .... -~ ~ (c/12p)2o-o ~ a~dOr. Com- 
parison of  this first-order treatment with the 
zero pressure solution employed in the text 
is accomplished most easily by considering 
a or0 = constant  nebula as an example. In 
this case the right-hand torque reduced to 

- 2~rP° -0  (_~_~ff) 2 
. ~ ' r g  sgn(x) lxl > h, .  (Al l )  

The solution of  (AI0) and (Al l )  can be 
combined with Eq. (A3) to find 

1 f lOF 1 
o" - O'o - 2rr r ~rr dt 2rrr 

f OF 1 OF 
~x dt - 2zrrvp f ~ [  dt 

= F/2~rrv o. (A 12) 

Where we have used/ 'p = Up. In the limit c 
0, (AI0)-(A12) reduces to the first-order 

version of  Eq. (14), i.e., 

or - o-0 ~ ~S~ sgn(x) (AI3) 

together with cr(-x) = -or(x) and, ~ = h, /h .  
The integral in (AI4) can in turn be ex- 
pressed in terms of exponential integrals as 

i El (X)  1 1 ;, 

L ]( 3E4( )- (h)3 E4 (h)] h-]2 

2 + ~ + 2 (AI5) 

where the exponential integrals, 

Ei(x) = f '  e' , -{ dt 

t~ .~ t 

(AI6) 

are well tabulated functions. Figure 3 com- 
pares solution (AI3) and (AI4) for the case 

= i. The artificial discontinuity at x = 0 is 
removed and the disturbance is weaker by a 
factor - 3 ,  but the general qualitative fea- 
tures that led to the prediction of an inertial 
limit remain the same. 
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