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Axisymmetric Hopf bifurcation in a free
surface rotating cylinder flow
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Abstract

Using highly resolved simulations of the axisymmetric Navier–
Stokes equations and a truncated Landau model we investigate the
behavior of the flow in the vicinity of the axisymmetric Hopf-type
transition in an open cylinder of height-to-radius aspect ratio of 3/2.
Rotating flows in open cylinders have many practical applications for
which the knowledge of the different flow states encountered is of value.
We report on the location and non-linear evolution characteristics of
the bifurcation and present, for the first time, evidence that confirms
that transition occurs via a non hysteretic supercritical Hopf bifurca-
tion, and visualisations of the mode to fully define the transition.
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1 Introduction

The transitions from a steady axisymmetric base state to an unsteady and/or
three dimensional flow of the swirling fluid inside a cylinder have been much
debated and the bifurcation properties of the flow in an enclosed cylinder
are well documented [1, 3, 4, 7, 9]. However, the same cannot be said for
the bifurcations of the flow in an open cylinder with a free surface. Few
investigations into this configuration have been performed and knowledge of
the stability and bifurcation characteristics of the system is patchy. Lopez [6]
first looked at the transition of the steady axisymmetric base state to an
unsteady axisymmetric state for an open cylinder with aspect ratio H/R =

1.5 as part of a broader numerical investigation into the symmetry properties
of the system. He concluded that there existed some hysteresis between the
steady and unsteady branches, finding that while the unsteady flow state was
generally observed from Re = 2650 and above, the steady flow state could
be reached at Reynolds numbers as high as Re = 3200 via manipulation of
the initial conditions. Specifically, for a Reynolds number of say Re = 2675 ,
using the steady solution at Re = 2600 as the initial condition caused the
flow to evolve to the periodic branch. However, if the steady Re = 2650

solution was employed as the initial condition for the Re = 2675 case, the
solution was found to converge to a steady state. Thus Lopez [6] was able
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to extend the steady solution to Re ∼ 3200 , by making successively smaller
increases in Re, and thereby concluded that the transition was hysteretic,
having both stable steady and unsteady solutions at a number of points in
the parameter space.

Brons et al. [2] investigated numerically the flow in an open cylinder over
a wide range of aspect ratios, 0.25 ≤ H/R ≤ 4.0 , limiting the flow to a
steady axisymmetric subspace to investigate the topological bifurcations of
the system. They revealed a rich array of possible flow structures including
some previously unidentified states, but their investigation was limited to
bifurcations of a topological nature and did not focus on the stability of the
flow as such. However, in order to ascertain the Reynolds number limits
within which their analyses were valid they did investigate the stability limit
for steady flow. They stated that for H/R = 1.5 the steady flow became
time-periodic at Re = 2640 , agreeing to within half a percent with Lopez [6]
on the location of the bifurcation. However the theory used to derive the
location appeared to assume that the bifurcation was non hysteretic (as had
been proven erstwhile was the case in an enclosed cylinder). This assumption
was contrary to the finding of Lopez [6] whose results suggested that the
transition was hysteretic by nature. It is this apparent discrepancy that we
address in this article.

2 Problem formulation

The system being investigated is shown schematically in Figure 1(a). A
vertically oriented circular cylinder with radius R and height H is filled with
a fluid of kinematic viscosity ν. The bottom is a rotating disk and the top
is a flat stress-free surface. Lopez et al. [6, 8] give information regarding the
modeling of this flow with a flat stress-free surface; it is shown that in ‘deep’
systems (H/R ≥ 1), and for low Froude numbers, this approximation is valid.
The rotation of the base at a constant angular velocity Ω results in spin-up
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Figure 1: (a) Schematic of the flow scenario being considered, showing the
key system parameters, and (b) the grid with macro elements and boundary
conditions indicated. This represents the left half of the meridional plane.

of the fluid and the evolution of a non-trivial flow state in the meridional
plane. The flow is fully defined by two parameters, the aspect ratio H/R and
the Reynolds number Re = ΩR2/ν . Under the right combination of H/R
and Re a form of vortex breakdown known as the “vortex breakdown bubble”
is known to occur [2].

2.1 Numerical details

An in house spectral element (se) package is used to perform the computa-
tions [11, 12]. The governing equations for the flow are the incompressible,
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unsteady momentum equation for a continuum,

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u , (1)

together with the continuity equation

∇ · u = 0 , (2)

where u ≡ (ur, uz, uθ)(r, z, t) is the axisymmetric velocity vector (indepen-
dent of the azimuthal coordinate), t is time and p is the kinematic static
pressure. The flow is computed in the meridional semi-plane, which is dis-
cretised into a mesh of quadrilateral elements. Within each element high
order polynomial basis functions are employed to approximate the flow vari-
ables over the Gauss–Legendre–Lobatto quadrature points. This permits
efficient computations and the exponential spatial convergence for which se
methods are known. For time integration a third order, backwards multistep
scheme is used [5].

The domain with the sparse macro-element mesh is shown in Figure 1(b).
A P-type resolution study was performed on the base mesh revealing that
polynomial basis functions of order P = 9 adequately resolved the flow in the
thin Ekman boundary layer at the base and the complex flow in the interior,
at reasonable computational expense. A time step of δt = 0.005 was chosen
to satisfy both temporal accuracy and the stability requirements of the code.

2.2 Methodology

The computations are performed as follows: at time t = 0 the base is set
impulsively to rotate with an angular velocity Ω = 1 rads−1. The solution
is then allowed to saturate for Re = 2680 , about 1.1% above the previously
established limit for steady flow [2, 6]. In this way the mode that causes
the break from a steady state is isolated for investigation. Once a saturated
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periodic state is reached, defined as being when the relative peak-to-peak
deviation over ten successive periods is less than 0.01%, the flow is brought to
a lower Reynolds number either via a step down or via a smooth (sinusoidal)
ramp down. Both methods of decreasing Reynolds number were found to
yield identical results. The flow is then allowed to evolve to a steady state as
we monitored the decay of the instability mode via the time histories of flow
parameters; we focus mostly on the axial component of velocity, although the
choice is arbitrary. The non-linear analysis is performed using a truncated
Landau model.

2.3 The Landau equation

While the behaviour of the bulk flow, governed by equations (1) and (2),
is modeled using the se method described in Section 2.1, we gain little in-
sight into the instability dynamics directly from these simulations. Using
the data generated via monitoring of flow variables in the se simulations, in
conjunction with a stability analysis model it is possible to analyse the tran-
sition behaviour directly. To that end we implement the non-linear Landau
model, in order to help describe how the mode saturates. This is important
in determining both the type of bifurcation and the amplitude of the mode
beyond saturation. We also ascertain the linear growth rate which can be
used, in much the same way as in a linear stability analysis, to predict transi-
tion points as a function of the control parameter (in this case the Reynolds
number).

The Landau equation, as prescribed by Sheard et al. [13], used to model
the non-linear growth and saturation of the instability is

dA

dt
= (σ+ iω)A− l(1+ ic)|A|2A+ · · · , (3)

where A(t) is a variable representing the amplitude of the perturbation.
Modes that can be described by a cubic truncation of (3) exhibit non hys-
teretic behaviour through transition, depending on the polarity (±) of l. If
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l is positive, the transition is not hysteretic, if it is negative, hysteresis may
occur, and higher order terms are required. The parameter σ is the linear
growth (or decay) rate of the instability. The model is described in detail
by Provansal et al. [10] and Sheard et al. [13]. Following Sheard et al. [13],
A(t) is a complex oscillator written as A = ρeiφ, and equation (3) is decom-
posed into real and imaginary parts

d log ρ

dt
= σ− lρ2 + · · · , (4)

dφ

dt
= ω− lcρ2 + · · · , (5)

where ρ represents the magnitude of the perturbation and φ the phase.
Given a time history of a quantity representing A, it is possible to calcu-
late d log |A|/dt using finite differences from the envelope of the amplitude
logarithm. From equation (4) a plot of this term against |A|2 yields σ and l
as the vertical axis intercept and the negative of the gradient, respectively.

In this fashion we proceed with the non-linear analysis of the transition
from steady to unsteady flow in the axisymmetric subspace for an open cylin-
der with aspect ratio H/R = 1.5 .

3 Results

Figure 2(a) shows the growth and saturation of the envelope for the pertur-
bation as manifest upon the axial component of the velocity at an arbitrary
point in the flow. We use this parameter as a measure of the energy in the
mode, that is |A| = vmax − vmin over one period of the flow, for use in the
Landau model, equation (4). The use of measurements taken at a single
arbitrary location is valid due to the global nature of the instability under
investigation [10]. A Reynolds number of Re = 2680 was chosen as the sat-
urated reference case from which the oscillations were allowed to decay to
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Figure 2: (a) The growth and saturation of the instability represented by
the axial component of velocity, v = uz, for Re = 2680 . (b) The derivative
of the amplitude logarithm plotted against the square of the amplitude, for
evolution from Re = 2680 to Re = 2620 . The negative slope at small |A|2

indicates an absence of hysteresis about the transition.

zero. The derivative of the amplitude logarithm is plotted against the square
of the amplitude in Figure 2(b), for the reduction in Reynolds number from
Re = 2680 to Re = 2620 . The primary points to note from Figure 2(b)
are the linear trend and the negative slope, especially as |A|2 → 0 . This
demonstrates that the transition is indeed a non hysteretic Hopf bifurcation
where the unsteady branch makes a clean break from the steady branch, as
predicted by Brons et al. [2], and also that equation (4) provides an accu-
rate model of the amplitude behaviour in the transition region for the open
cylinder flow. From the data presented in Figure 2(b) extrapolation to the
axis at |A|2 = 0 yields d log |A|/dt = σ , the linear growth (or decay) rate.
In this case a decay rate of σ = −1.21× 10−3 is estimated.

Simulations were performed throughout the Reynolds number range 2600 ≤
Re ≤ 2650 and, from plots similar to Figure 2(b), decay rates were calcu-
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Figure 3: (a) The decay rate of the instability plotted against Reynolds
number. The critical Reynolds number is found where σ = 0 . (b) The
square of the post saturation velocity envelope amplitude plotted against
Reynolds number, verifying the critical Reynolds number predicted by the
Landau model in (a).

lated and are plotted in Figure 3(a) against Reynolds number. From a linear
extrapolation to the point where σ becomes positive the critical Reynolds
number is estimated to be Recrit = 2659 . This value is within one per-
cent agreement with the values reported by Lopez [6] and Brons et al. [2] of
Recrit = 2650 and 2640 , respectively.

An independent verification of this finding is possible via investigation
of the strength of oscillations, after saturation, at Reynolds numbers be-
yond Recrit. Solving (4) for d log |ρ|/dt = 0 yields ρ2 = |A|2sat = σ/l , where
|A|sat is the saturated oscillation amplitude. As shown in Figure 3(a), σ is
proportional to the Reynolds number increment above (and below) the crit-
ical Reynolds number (Re − Recrit) in the neighbourhood of a simple transi-
tion [13], and therefore |A|2sat ∝ Re − Recrit . Values of |A|2sat measured at Re
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in the neighbourhood of the transition are shown in Figure 3(b). The linear
trend in the vicinity of Re − Recrit = 0 strongly supports the critical Reynolds
number predicted by the Landau model. From the simulations performed at
Re > Recrit estimates of the period of the oscillation post transition were also
obtained. For Reynolds numbers of Re = 2680 , 2750 and 3000 the dimen-
sionless saturated periods, T ∗ = T/Ω , were T ∗ = 28.34 , 28.23 and 27.86,
respectively, agreeing to better than one percent with corresponding values
inferred from data presented by Lopez [6, Figure 10].

Figure 4 provides a visual presentation of the mode giving insight into
its physical characteristics. It shows contours of the perturbation as man-
ifest upon the azimuthal component of the vorticity. These were obtained
by using the results from two se simulations, subtracting the steady base
flow field from a slightly perturbed flow field, in order to isolate the per-
turbation. One full period of the perturbation flow field is shown over nine
frames at intervals of T ∗/8. A visualisation of this mode has not been previ-
ously published. Overlaid on the contours of Figure 4 are the axisymmetric
steady-state streamlines of the base flow, showing the structure of the base
flow in the meridional semi-plane. The mode is most intense at around 3/8th
and 7/8th of the way through the cycle and from these frames it can be seen
that, spatially, the instability is most energetic in the vicinity of the vortex
breakdown bubble. Specifically, the maximum positive (negative) vorticity is
observed at the outer (inner) edge of the interface between the vortex break-
down bubble and the primary meridional flow, with this situation reversing
twice per period. We suggest that the cause of unsteadiness in this flow is
an instability of the weak shear layer between the slow recirculation of the
vortex breakdown bubble and the relatively fast primary circulation.
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Figure 4: Velocity streamlines in the rz-plane overlaid on contours of the
perturbation azimuthal vorticity, showing one period of the instability during
the linear growth stage. Contours are spaced evenly about zero.
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4 Conclusion

We have employed axisymmetric simulations of the incompressible, time de-
pendent, Navier–Stokes equations together with the non-linear Landau model
to resolve a long standing discrepancy relating to swirling cylinder flows. It
was confirmed that time dependence develops via a non hysteretic Hopf bi-
furcation. The transitional Reynolds number was predicted in agreement
with previous findings and visualisations of the perturbation azimuthal vor-
ticity in the linear regime provided hitherto uncovered insight into the cause
of the transition. We suggest that the instability causing transition in this
case is of the weak shear layer present at the interface between the primary
meridional flow and the recirculating flow of the so called vortex breakdown
bubble. As the focus of this article is the axisymmetric transition, it remains
an open question as to whether the axisymmetric mode investigated here is
the primary instability of the system. It has been shown to be the primary
instability over a large range of the parameter space for the enclosed cylin-
der [3]. Whereas, it has been shown to be a secondary bifurcation in some
open systems [8]. As the full range of aspect ratios has yet to be investigated
for the free surface flow, further investigation of the bifurcation properties
(including the breaking of symmetry) across a range of H/R in open cylinder
flows remains open and is the focus of a forthcoming article.
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