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Abstract: Imaging techniques employed to measure the structure of 

granular, particulate and porous materials are limited by scale, temporal 

resolution and, for biological samples, radiation exposure. This paper 

describes a technique for determining the distribution of particle sizes in 

opaque samples, for particle volume fractions less than ten percent, using a 

single projection radiograph. The method is based on the derived property 

of the additivity of the particles’ spatial autocorrelation function in 

projection images. Simulations and experiments demonstrate the ability to 

use this property to determine the distribution of particle sizes in a material. 
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1. Introduction 

Granular, particulate and porous materials and systems are of interest across a spread of 

disciplines including material, chemical, geological and biological science and engineering. 

Many existing and new porous materials have special properties that are a consequence of 

their unique structure [1]. To geologists, the behavior of many natural systems, such as those 

comprised of sand, soil and snow, can be understood by studying the behavior of granular 

media [2]. As such, simple methods to characterize these materials and systems are in 

demand. 

Characterization techniques based on optical scattering [3,4] are well established but are 

limited to non-opaque samples. X-ray computed tomography (CT) and microtomography [5] 

are capable of imaging the structure of opaque samples, but suffer comparatively poor 

temporal resolution; furthermore, ionizing radiation dose can be problematic for biological 

samples. Diffraction based X-ray techniques [6–9] have to date been limited to studying 

particulates no larger than a few micrometres or have only been qualitative in nature. 

In this paper we show that for low volume fraction suspensions of particles, the spatial 

autocorrelation function (SAF) of a projection image of the particles is additive, and use this 

property to determine the distribution of particle sizes from a single image. 

2. Theory 

Many systems of interest consist of spheroidal particles dispersed in a pseudo-random 

arrangement within some medium. Planar X-ray imaging of such a system can produce a 

discernible speckle pattern. However, when the difference in attenuation between the particles 

and medium is small, the speckle contrast is poor. Propagation-based phase contrast X-ray 

imaging (PCXI) [10,11], using a partially coherent source, can produce significantly higher 

speckle contrast [9,12]. A typical speckle pattern can be seen in Fig. 1. 

 

Fig. 1. Schematic of propagation-based phase contrast X-ray imaging setup and image 

processing steps. The sample and detector are in-line and z is the propagation distance for 

phase contrast imaging. A region of a typical X-ray image has been magnified to highlight the 

speckled appearance produced by particles. A spatial autocorrelation is performed; which is 

azimuthally averaged to produce the final one-dimensional autocorrelation function. 

To obtain useful information from these speckled images, a statistical measure such as the 

SAF can be used. In the context of heterodyne imaging of particles, Alaimo et al. derive the 

property of linearity: that the autocorrelation function is a weighted sum of contributions from 

all the particles, which they use to recover the velocity distribution from a seeded flow [13]. 

For a side scattering (non-heterodyne) particle image velocimetry configuration, Fouras et al. 
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proposed that the total cross-correlation function is equal to the sum of the cross-correlation 

functions at each depth, and used this notion to perform three-dimensional velocity 

measurements from two-dimensional images [14–16]. Nguyen et al. extended this concept 

and used the SAF to infer particle concentration as a function of depth [17]. In what follows, 

the linearity property of the SAF: that the SAF of a projection image is equal to the sum of the 

SAF of each particle, will be justified in the context of X-ray imaging, with or without phase 

contrast, and be used to determine the distribution of particle sizes. 

For a sample comprised of randomly oriented particles or pores, the fluctuations in X-ray 

absorption across the image are generally small. So long as the net attenuation itself is not too 

large we can approximate the exponential decay in X-ray intensity to first order terms: 

 ( )( , )
( , ) 1 , ,

( , )
in

I x y
I x y T x y

I x y
µ

′
= −≃  (1) 

where I′(x,y) is the measured intensity, I
in

(x,y) is the incident intensity, µ  is the material linear 

attenuation coefficient assuming a single homogenous material and T(x,y) is the projected 

thickness of the particles / pores. 

In phase contrast X-ray imaging, intensity is again well approximated as a linear function 

of particle thickness for sufficiently short propagation distances (refer to the treatment of the 

transport of intensity equation by Paganin et al. [18]). This approximation is particularly 

accurate when high spatial frequencies are attenuated, which can be a result of the limited 

spatial coherence of the beam, the point spread function of the detection system and/or image 

post processing. 

In both cases, because the change in intensity can be treated as a linear function of the 

projected thickness, the intensity function for a distribution of particle sizes, in which the 

position of each particle is given by a randomly positioned delta function, can be expressed as 

a sum of convolutions: 
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where I
m
 denotes that the image mean has been subtracted. Here we assume spherical particles 

of radius r, but note that the theory is valid for particles of any shape if their orientation are 

either identical or completely random (see [19]). We define the minimum and maximum radii 

as Rmin and Rmax, respectively. Here Nr is the number of particles of a particular radius. 

The power spectrum of this image is given by: 
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where F denotes a Fourier transform. By application of the Wiener–Khinchin theorem, the 

autocorrelation function can be expressed as: 
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Theoretically, the positions of particles in a suspension of non-penetrating particles cannot 

be truly random. However, for low volume fractions of particles, the positions of particles are 

only weakly correlated and the autocorrelation function can be approximated by the sum of 

the autocorrelation function of each particle: 

#164928 - $15.00 USD Received 19 Mar 2012; revised 25 May 2012; accepted 28 May 2012; published 28 Jun 2012
(C) 2012 OSA 2 July 2012 / Vol. 20,  No. 14 / OPTICS EXPRESS  15964



 ( ){ } { } { }
max

min

221

1

SAF , ( ) ( ) ( , ) .
rR N

m m

n n r

r R n

I x y x x y y I x y−

= =

 
δ − δ − ⋅ 

 
∑ ∑≃ F F F  (5) 

Since the expected power spectrum of Nr randomly positioned delta functions can be 

shown to be Nr if the mean intensity is removed [19]: 
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For a distribution of particle sizes, if the SAF of all potential particle sizes is known, Eq. 

(6) is a linear inverse problem and the distribution, Nr, can be determined numerically. 

3. Simulations 

Computer simulations were undertaken to validate this theory and to demonstrate the ability 

to perform particle sizing. Synthetic samples were generated consisting of non-penetrating 

spherical glass particles randomly suspended in rectangular volumes (10 mm thick) with a 

total volume fraction of 2%. The position of each particle was generated randomly: a position 

was accepted if the particle to be inserted did not collide with any particles already in the 

volume. If a collision did occur, a new position was generated until an unoccupied location 

was found. At a volume fraction of 2%, the number of collisions is small, implying that the 

particles’ positions are only weakly correlated 

PCXI was simulated by reducing the volume to a projected thickness, calculating the 

transmitted wave function and propagating using the angular spectrum method [20]. The 

imaging source was a coherent monochromatic beam at 33 keV and the propagation distance 

between the sample and detector, z, was 50 cm (Fig. 1). The glass particles had a refractive 

index decrement, Re(1-n), of 4.863 × 10
−7

and an absorption coefficient of 127.36 m
−1

 [12]. 

The propagated intensity function was filtered with a Gaussian kernel to simulate the point 

spread function of the detector and binned to achieve an effective pixel size of 6 µm. This low 

pass filtering also accounts for the limited spatial coherence of an actual synchrotron beam 

[21]. The image mean was subtracted before a two-dimensional spatial autocorrelation was 

performed. The SAF was averaged over multiple windows (128 × 128 pixels) and azimuthally 

averaged (Fig. 1). 

For a simple mixture with an equal number of particles of two discrete diameters, the SAF 

should be an equally weighted sum of the SAFs of single spheres of each diameter, as is 

shown to be the case in Fig. 2. 

To model a more realistic sample, a mixture was generated in which particle diameters 

were sampled from a log-normal distribution: a skewed distribution whose logarithm is 

normally distributed, which is commonly used for the characterization of particle sizes [22]. 

The mean and standard deviation of the diameter’s logarithm were µ = 4.72 and σ = 0.231, 

respectively. The SAF was averaged over 1000 windows and 50 calibration SAFs were 

generated covering the range of particle sizes in the sample, each generated from the image of 

a single sphere. Solving for the distribution of particle diameters, Nr in Eq. (6), is a linear 

inverse problem. A least squares solver with a non-negative constraint and a second order 

finite-difference regularizer to penalize non-smooth solutions was used. The calculated 

distribution of particle diameters is presented in Fig. 3. The solution is shifted slightly away 

from the skew, which is the result of smoothing applied by the regularization term and 

depends on the choice of the regularization parameter. 
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Fig. 2. The autocorrelation function produced by an equal mixture of two particle sizes is equal 

to the weighted sum of the autocorrelation functions of particles of each size. SAF69 and 

SAF116 are equally weighted autocorrelation functions of single particles with diameters of 69 

µm and 116 µm respectively. SAF69,116 is the autocorrelation of an equal mixture (by number) 

of particles. All SAFs in this figure were averaged over 256 windows. 

 

Fig. 3. Calculated distribution of particle diameters from simulated data. Each point represents 

the fraction of particles of that diameter. 

4. Experimental results 

A physical experiment, to further demonstrate the validity of the theory outlined here, was 

performed in experimental Hutch 3 of beamline 20B2 at the SPring-8 synchrotron in Japan 

[23]. The source-to-sample distance of ~210 m provided an incident wavefield of sufficient 

spatial coherence for propagation-based phase contrast imaging. 

Because of the difficulty in obtaining particles for calibration purposes, a slightly different 

problem was tackled: to determine the ratio of mixtures of two particle sizes (where each 

nominal size is known to contain a distribution of diameters). 

Nine mixtures of glass particles of two sizes (nominally 69 µm and 116 µm; by Master 

sizer particle size analyzer log-normal distributions: µ = 4.26, σ = 0.227 and µ = 4.72, σ = 

0.231) were prepared in cuvettes (10x10x60 mm
3
) by suspension in white petroleum jelly. 

The total volume fraction was again chosen to be 2%. Imaging was performed with a 

monochromatic beam at an energy of 33 keV, with a propagation distance of 50 cm between 

sample and detector. The detector’s effective pixel size was 6 µm. 

Based on Eq. (6), the SAF for these samples can be expressed in the form: 

 { } 69 116
SAF ( , ) SAF (1 )SAFi x y f f= + −  (7) 
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where f is the volume fraction of the 69 µm particles and the calibration SAFs (SAF69 and 

SAF116) are obtained from samples of unmixed particles. f can be determined by inversion of 

Eq. (7). 
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Fig. 4. Experimentally obtained volume fraction of one particle size from nine bimodal 

mixtures averaged over 460 windows. True solutions lie on the solid line. 

The results for the fractions of each particle are presented in Fig. 4, and it can be seen that 

there is good agreement with the true values. Simulations of bimodal mixtures of particles 

with the same lognormal distributions used in the previous experiment were performed, and 

the results are presented in Fig. 5, which highlight the relationship between the error metric 

and the number of windows averaged over. The experimental error seen in Fig. 4 is more 

significant than that predicted by simulation. It is likely this discrepancy is largely due to 

inaccuracies in the preparation of the samples (e.g. uneven mixing). 

 

Fig. 5. Calculated volume fraction of one particle size in a mixture of two particles from 

simulated data; illustrating the reduction in error by averaging over 256 windows (b) versus 4 

windows (a). Ideal solutions lie on the solid line. (c) Root mean square error as a function of 

the number of windows averaged over. 

An apparent limitation evident in this experiment is the need for calibration samples. In 

principle it is possible to produce these samples, although a more practical approach would be 

to use simulated calibration samples in their place. However, the imaging system is complex 

and modeling it with the required accuracy is not trivial. 

A theoretical limit on the maximum volume fraction for this method has already been 

touched on. Decreasing randomness at higher volume fractions corresponds to a breakdown of 

the assumption that the particles’ positions are uncorrelated and the development of 

organization in their arrangement. This is analogous to the concept of the structure factor [24] 

in scattering techniques. Based on the SAF of synthetic samples, evidence of non-randomness 
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was observed for volume fractions greater than around 2-3%. However, in simulated 

experiments, comparable to those used to produce Fig. 5, increasing the volume fraction of 

particles only had a significant impact on the accuracy of solutions above 10%. 

5. Conclusions 

The methodologies discussed in this paper are expected to be useful for studying granular and 

particulate materials and systems with less radiation and higher temporal resolution than CT 

imaging, and at a scale beyond that where diffraction based X-ray scattering techniques have 

been demonstrated to be applicable. 

Simulations suggest the upper limit of packing fractions for these methods is around 10%. 

As the packing fraction increases, the assumption of randomness of the position of the 

particles begins to break down as the sample starts developing a degree of organization. By 

using the extra information present in the SAF of such systems, it is conceivable that these 

methodologies could be extended to more densely packed systems. 
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