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An approach based on the Eulerian two-phase flow theory to numerically simulate ice accretions on
an aircraft wing is developed. The air flowfield is obtained through Euler flow computation. The water
droplets’ flowfield is solved through proposing a permeable wall to simulate the droplets impingement.
The droplets collection efficiency is calculated according to the droplets velocity and apparent density
distribution. The thermodynamic model of ice accretion is based on the classical Messinger model and an
integral boundary layer method is employed to account for roughness effect in calculating the convective
heat transfer coefficient. The ice shape is built with the assumption that ice grows in the direction
normal to the airfoil/wing surface. The ice accretions on a NACA0012 airfoil and a GLC-305 wing model
under different icing conditions are evaluated and the comparison between the predicted results and
experimental data indicates that the simulation approach developed in this paper is feasible and effective.

© 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

Ice accretion on aircraft wings can be a hazard to flight safety.
The cause of the accretion is due to supercooled water droplets
impinging to the windward face of the wings. Ice accretions may
modify the designed aerodynamic shapes and considerably de-
grade the aerodynamic performances. Thus, being able to evaluate
the mechanisms and consequences of the ice accretion is of great
importance to anti-icing and de-icing.

Different icing conditions form different types of ice accretions.
Depending on the icing mechanism, ice accretions can be classi-
fied as: rime ice, glaze ice and mixed ice. Rime ice usually oc-
curs in low velocity, low environment temperature and low liquid
water content and forms because supercooled droplets freeze im-
mediately when they impinge onto the wing surface. The glaze
ice forms at an environment temperature around 0 ◦C and a high
liquid water content [11]. The droplets freeze partially at impinge-
ment location and then freeze gradually during the flow along the
wing surface caused by airflow. The mixed ice is defined as a mix-
ture of the rime ice and glaze ice. Glaze ice and mixed ice can
corrupt the designed aerodynamic shapes of the wings more sig-
nificantly than rime ice.

These forms of ice accretion can be investigated by several
means, including flight tests, experimental simulation [1,13], en-
gineering methods [4,17] and numerical simulation [16,15]. Flight
test and experimental simulation can obtain exact ice shapes but
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are usually too expensive to be widely adopted. The engineering
method uses the typical experimental data and empirical formulae
but could hardly analyze the ice accretion process. Therefore, nu-
merical simulation is widely adopted because it is economical and
can simulate the icing process and so provide a relatively exact
evaluation of ice accretion. Several codes for simulating ice accre-
tion have been developed internationally, such as: LEWICE (USA)
[12], CAPTA (France) [6], TRAJICE2 (UK) [5], FENSAP-ICE (Canada)
[2], MULTIICE (Italy) [10,7].

Generally, the numerical simulation of ice accretion mainly con-
sists of four modules: (1) air flowfield solution, (2) droplets collec-
tion efficiency calculation, (3) boundary layer characteristics evalu-
ation, and (4) ice amount evaluation via thermodynamic model.

The air flowfield can be obtained by using the panel method, to
solve the potential flow equation, or to solve the Euler equations
or directly to solve Navier–Stokes equations. For example, the po-
tential flow equation is solved in LEWICE, MULTIICE and TRAJICE2
codes while the Euler equations and N-S equations are solved in
CAPTA and FENSAP-ICE codes respectively.

The droplets’ collection efficiency on the wing surface is im-
portant in numerically simulating ice accretions and two computa-
tional methods are available: Lagrangian method and Eulerian two-
phase flow method. The Lagrangian method obtains the collec-
tion efficiency by solving the motion equation of droplets to track
each droplet’s trajectory in the flowfield. Eulerian two-phase flow
method considers the droplets in the airflow as a form of pseudo
fluid [18] which interpenetrates with the air and the collection
efficiency is obtained through solving the velocity and apparent
density distribution of droplets. There are advantages in using
the Eulerian two-phase flow method compared with a Lagrangian
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approach since the same mesh can be used to solve the governing
equations for the airflow and droplets. Moreover, droplets’ collec-
tion efficiency may be calculated through the solution of droplets’
flowfield directly, which is significant to the investigation of ice ac-
cretions in three-dimensional application. The Eulerian two-phase
flow method is employed in FENSAP-ICE code while the Lagrange
approach is employed in the other codes.

The convective heat transfer coefficient is an essential param-
eter in the thermodynamic process of ice accretions. It primarily
depends on the boundary layer properties, such as momentum
thickness, skin friction coefficient and etc. FENSAP-ICE code solves
the RANS equations and a modification is made to account for the
roughness effect in one-equation turbulent model. The convective
heat transfer coefficient is obtained through the temperature dis-
tribution near the wing surface. LEWICE, TRAJICE2 and MULTIICE
codes employ integral boundary layer methods corrected to ac-
count for the roughness effect. In CAPTA code, the modification
to roughness is added in the mixing length model to compute
the convective heat transfer coefficient. The thermodynamic mod-
els in these ice accretion codes are mostly based on the classical
Messinger model [8].

This paper presents a method to numerically simulate the
ice accretions based on Eulerian two-phase flow theory. In two-
dimensional application, the rime ice accretion, glaze ice accretion
and mixed ice accretion are simulated with the following pro-
cedures: The air flowfield is obtained through solving Eulerian
equations. A permeable wall is proposed to simulate the droplet
impingement on an airfoil. The droplet collection efficiency can be
obtained from the solution of the droplet flowfield. The convective
heat transfer coefficient is evaluated through employing an integral
boundary layer method corrected to account for roughness effect
and the ice amount is evaluated through performing the mass and
energy balances in the thermodynamic model. The process of ice
accretion is simulated with the assumption that ice accumulates
layer-by-layer and the ice shape is predicted with the assumption
that ice grows in the direction normal to the airfoil surface. In
three-dimensional application, the droplet impingement on a wing
is simulated with the method adapted from the two-dimensional
application, and then the three-dimensional rime ice accretions on
a wing is obtained under the assumption that the droplets freeze
immediately when they impinge onto the wing surface in an envi-
ronment with very low temperature.

2. Governing equations of two-phase flows

The following assumptions are needed before the governing
equations of two-phase flows are established:

(1) The volume fraction of droplets is so small that the effect of
droplet movement on airflow can be neglected;

(2) The external forces imposed on the droplets only involve the
drag, arising from airflow, gravity and buoyancy. The turbulent
fluctuations of the airflow have no effect on the droplet move-
ment;

(3) There is no heat transfer or evaporation in the movement of
droplets before they impinge onto the wing. Thus, the physical
parameters of the droplets are assumed not to be changed.

(4) The droplets are simplified to be spheres with a median volu-
metric diameter.

(5) After the droplets impinge onto the wing surface, they do not
bounce and splash.

2.1. Solution of the governing equations for airflow

According to Assumption 1, there is no coupling relationship
between the governing equations for airflow and the ones for
Fig. 1. The droplet velocity components.

droplets. Therefore, the governing equations for airflow can be
solved independently. The panel method can calculate the air ve-
locity at any point in the flowfield directly but usually lacks accu-
racy in computing the complete flowfield. In contrast, the solution
of the Navier–Stokes equations can provide a more accurate flow-
field computation but is time consuming. In order to synthetically
consider the computational precision and efficiency, an Euler flow
computation is adopted in this paper.

2.2. Governing equations for droplets

Based on the Multi-fluid model of droplets [18], the droplets
distributed in the flowfield can be regarded as a kind of pseudo
fluid that penetrates the ‘real’ fluid in Eulerian coordinates. Accord-
ing to Assumptions 2, 3 and 4, the fluctuation term, phase-change
term and Magnus force in the governing equations for droplets can
be neglected. Furthermore, the energy equation needs not to be
solved.

Therefore, the continuity and momentum equations for droplets
in three-dimensional application can be simplified as:

∂ρ̄

∂t
+ ∂(ρ̄vx)

∂x
+ ∂(ρ̄v y)

∂ y
+ ∂(ρ̄vz)

∂z
= 0 (1)

∂(ρ̄vx)

∂t
+ ∂(ρ̄vx vx)

∂x
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∂ y
+ ∂(ρ̄vz vz)

∂z
= F Dz (4)

In above equations, ρ̄ denotes droplet apparent density (i.e.
the mass of droplets per unit volume) and ρ̄ = αV · ρW , where
αV , ρW denote the droplet volume fraction and density of water,
respectively. The symbols vx , v y , vz denote the droplet velocity
components, as shown in Fig. 1.

The symbols F Dx , F D y , F Dz denote the drag components caused
by airflow and the symbol FGB denotes the resultant force of the
gravity and buoyancy of droplets.

The formulae for calculating F Dx , F D y , F Dz can be written as:

F Dx = 0.75ρ̄ · C D Red · μ
ρw · MVD2

(ux − vx) (5)

F D y = 0.75ρ̄ · C D Red · μ
ρw · MVD2

(u y − v y) (6)

F Dz = 0.75ρ̄ · C D Red · μ
ρw · MVD2

(uz − vz) (7)

where, the symbols ux , u y , uz denote the air velocity components
and the symbols μ, MVD, C D , Red denote the air molecular viscos-
ity coefficient, median volumetric diameter, drag coefficient and
Reynolds number of the droplets, respectively. The expression of
Red can be written as:
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Fig. 2. Contravariant velocity distribution of the control volume for 2-D application.

Red = ρa · MVD

μ
|u − v| (8)

Furthermore, the combined variable C D Red can be calculated
with the following formula [15]:

C D Red = 24
(
1 + 0.197Re0.63

d + 2.6 × 10−4Re1.38
d

)
(9)

The formula calculating FGB can be written as:

FGB = ρ̄ · g · (1 − ρa/ρw) (10)

where g is the acceleration due to gravity.

2.3. Simulation of droplet impingement on an airfoil/wing surface
through a permeable wall

In the Eulerian two-phase flow method, the droplet collection
efficiency is determined by the droplet apparent density and veloc-
ity near the wall. Therefore, the setting of the wall condition is an
important factor in the solution of the droplet flowfield. Some pre-
vious literatures [2,3] set the initial values of the droplet apparent
density and velocity near the wall to be zero, and no special tech-
niques were employed to deal with the wall boundary. This might
cause oscillations in the solution of the droplet flowfield and some
extra stabilization terms must be added.

The approach taken in this paper is to use a permeable wall
to simulate droplet impingement on an airfoil/wing surface. First,
Cartesian coordinates are transformed into body-fitted curvilinear
coordinates. In two-dimensional application, a control volume near
the stagnation point of the airfoil is selected as the investigated
object, as shown in Fig. 2.

From Fig. 2, the control volume has four interfaces with cor-
responding droplet velocities. These velocities are contravariant
velocities in body-fitted curvilinear coordinates and they are per-
pendicular to corresponding interfaces. The contravariant velocities
U1 and U3 in interface 1 and interface 3 are parallel to the wall
boundary. Therefore, they do not contribute to the impingement.
On the other hand, the contravariant velocity V 2 in interface 2
points to the interior of the control volume, which means that
droplets will flow into the control volume through interface 2.

If the droplet velocity on the wall boundary (which is a super-
position to interface 4 of the control volume) is set to be zero, the
droplet contravariant velocity V 4 is equal to zero. Therefore, in the
discretization process using the finite-volume method, this setting
is equivalent to a fact that droplets have no impingement with the
wall because the net flux of droplets into interface 4 (namely the
wall boundary) is null. As a result, most of the droplets which flow
into the control volume through interface 2 settle in the control
volume and cannot reach the wall. In this way the method cannot
simulate the physical phenomenon of the impingement between
the droplets and wall effectively. In fact, because of the means of
Fig. 3. Setting of the wall boundary conditions.

Fig. 4. Contravariant velocity distribution of the control volume for 3-D application.

the impingement between the droplets and wall, the supercooled
droplets adhere to the wall after they have inelastic impingements
with the wall. However, before the droplets reach the wall, they
have fairly high normal velocity relative to the wall and this ve-
locity turns into zero instantaneously when the droplets impinge
with the wall inelastically.

Similarly, the droplet apparent density on the wall boundary
cannot be set to be zero, otherwise it is equivalent to a fact that
no droplets will impinge onto the wall.

Based on the above analysis and by also taking into account the
principle that droplets cannot flow into the interior flowfield from
the wall, it is possible to set the wall condition in 2-D application
as follows:

If the contravariant velocity V P , located in the center of a con-
trol volume near the wall, points to the wall, the droplets within
this control volume may impinge onto the wall (as shown in
Fig. 3(a)). Then the contravariant velocity on the wall boundary
is calculated through an interpolation from the interior flowfield,
as is the apparent density on the wall boundary. These contravari-
ant velocity and apparent density are applied as the wall condition
for this control volume in the next iteration.

If, however, the contravariant velocity V P in the center of the
control volume near the wall points to the interior flowfield, the
droplets have no possibility of impinging on the wall (as shown in
Fig. 3(b)). In this case the droplet velocity and apparent density on
the wall boundary are set to be zero, which is applied as the wall
condition for this control volume in the next iteration.

The setting method of wall conditions in two-dimensional ap-
plication can be extended into three-dimensional application. Fig. 4
shows the investigated control volume of 3-D application.

The droplet impingement on the airfoil/wing surface can be
simulated effectively by applying this kind of wall condition and
the accuracy and convergence of numerical computation can also
be improved.
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2.4. Solution of the governing equations for droplets

The unknowns in the droplet governing equations include
droplet velocities and apparent density. There are three unknowns
for 2-D application and four unknowns for 3-D application. The
equations can be solved in closed form because the number of
unknowns is equal to the number of equations. The governing
equations are discretized using the finite-volume method in body-
fitted curvilinear coordinates. The convective term is discretized
using QUICK scheme, with the deferred correction method em-
ployed. The temporal term is discretized using the first-order im-
plicit scheme.

The droplet apparent density and velocities for 3-D application
at time tn are solutions of

J
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∫∫∫
Ω

[
∂

∂ξ
(ρ̄U )n

+ ∂

∂η
(ρ̄V )n + ∂

∂ζ
(ρ̄W )n

]
dξ dηdζ = 0 (11)

J
(ρ̄vx)

n − (ρ̄vx)
n−1

�t
+

∫∫∫
Ω

[
∂

∂ξ
(ρ̄U vx)

n + ∂

∂η
(ρ̄V vx)

n

+ ∂

∂ζ
(ρ̄W vx)

n
]

dξ dηdζ =
∫∫∫

Ω

J · F n
Dx dξ dηdζ (12)

J
(ρ̄v y)

n − (ρ̄v y)
n−1

�t
+

∫∫∫
Ω

[
∂

∂ξ
(ρ̄U v y)

n + ∂

∂η
(ρ̄V v y)

n

+ ∂

∂ζ
(ρ̄W v y)

n
]

dξ dηdζ =
∫∫∫

Ω

J · (F D y + FGB)
n dξ dηdζ

(13)

J
(ρ̄vz)

n − (ρ̄vz)
n−1

�t
+

∫∫∫
Ω

[
∂

∂ξ
(ρ̄U vz)

n + ∂

∂η
(ρ̄V vz)

n

+ ∂

∂ζ
(ρ̄W vz)

n
]

dξ dηdζ =
∫∫∫

Ω

J · F n
Dz dξ dηdζ (14)

where, Ω is the control volume in body-fitted curvilinear coordi-
nates, J is Jacobi factor and U , V , W are contravariant velocity
components of droplets.

It is worth noting that the possible oscillations in the solution
of the governing equations for droplets mentioned in Refs. [2,3]
are not found by using the computational method presented in
this paper. Therefore, the extra stabilization terms are not needed.

2.5. Calculation of collection efficiency

Based on the velocity distribution of airflow, the governing
equations for the droplets are solved and the normal velocity vnw

and apparent density ρ̄w of droplets on the wall boundary can
be obtained after the numerical computation converges. Therefore,
the local collection efficiency β , which is non-dimensional, can be
obtained conveniently with the Eulerian method:

β = −α · u · n (15)

where α denotes the value of the ratio of the volume occupied by
water over the total volume of the fluid element; u represents the
value of the droplets velocity over the element; and n expresses
the normal direction.
3. Boundary layer calculation

3.1. Roughness on iced surface

The roughness on iced surface is irregular and its formation
mechanism is complex so that it is difficult to simulate the rough-
ness precisely in numerical simulation of ice accretion. The equiv-
alent sand-grain roughness is employed to describe the roughness
effect. To a 2-D airfoil, it can be evaluated with the following ex-
pression obtained from the experimental data [14]:

ks = 0.0008C · (0.047 · Tc − 11.27)

· (0.5714 + 0.2457 · LWC + 1.2571 · LWC2) (16)

where C denotes the airfoil chord and Tc denotes the environmen-
tal temperature.

3.2. Integral boundary layer method

An important parameter in numerical simulation of ice accre-
tion is convective heat transfer coefficient which mainly depends
on the property of the boundary layer, such as the momentum
thickness, skin friction coefficient, and etc. In this paper, the con-
vective heat transfer coefficient is evaluated through employing an
integral boundary layer method based on the ones used in LEWICE
[12] and MULTIICE [10] codes.

The roughness Reynolds number is defined as:

Rek = ue · ks

υ
(17)

where, ue is air velocity at boundary layer edge and υ is kinematic
viscosity.

When Rek is lower than 600, the boundary layer is assumed to
be laminar and the momentum thickness can be calculated as:

θl =

√√√√√0.45υ

u6
e

s∫
0

u5
e ds (18)

And the convective heat transfer coefficient can be evaluated
with the following expression:

hcv = 0.293 · λ · u1.435
e√

υ · ∫ s
0 u1.87

e ds
(19)

where λ is air thermal conductivity.
When Rek is greater than or equal to 600, the boundary layer is

thought to be turbulent and the momentum thickness is calculated
with the following expression:

θt = 0.0263 · υ0.2

u3.4
e

( s∫
str

u4
e ds

)0.8

+ θltr (20)

where θltr is the laminar momentum thickness at the transition
location. Then the convective heat transfer coefficient can be eval-
uated as:

hcv = ρa · C pa · ue · 1/2C f

Prt + √
1/2 · C f · 0.52 · ( uτ ·ks

υ )0.45 · Pr0.8

(21)

where, the symbols C pa , Pr, Prt denote the specific heat of air,
Prandtl Number, turbulent Prandtl Number, respectively; and C f ,
uτ denote the skin friction coefficient, friction velocity, respec-
tively. The formulae for evaluating them can be written as follows:
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Fig. 5. Mass balance in the control volume.

1/2C f = 0.1681

[ln( 864·θt
ks

+ 2.568)]2
(22)

uτ = ue ·
√

1/2C f (23)

4. Thermodynamic model

The thermodynamic model is based on the classical Messinger
model [8] employed by most of the ice accretion codes and the
ice amount of every control volume on a 2-D airfoil is evaluated
through performing the mass and energy balances.

4.1. Mass balance

Fig. 5 shows the mass balance in the control volume on the
airfoil.

As shown in this figure, the mass balance equation can be writ-
ten as:

ṁimp + ṁflowin − ṁice − ṁflowout − ṁes = 0 (24)

where ṁimp denotes the impinging water mass in unit time and it
can be calculated as:

ṁimp = LWC · v∞ · β · A (25)

where the symbol A denotes the impingement area of the control
volume.

The symbols ṁflowin , ṁflowout denote the water mass flowing
into the control volume and the one flowing out of control volume
in unit time while ṁice , ṁes denote the ice mass and the evapora-
tion or sublimation mass within the control volume in unit time.

The freezing fraction is defined as:

f = ṁice

ṁimp + ṁflowin − ṁes
(26)

therefore:

ṁice = f · (ṁimp + ṁflowin − ṁes)

ṁflowout = (1 − f ) · (ṁimp + ṁflowin − ṁes) (27)

4.2. Energy balance

The energy transfer within the control volume can be assumed
to consist of three parts: the convective heat and impinging heat,
latent heat and sensible heat.

4.2.1. Convective heat and impinging heat
The convective heat can be evaluated as:

Q̇ ca = hcv · (Trec − Tb) · A (28)

where the symbols Trec , Tb denote the airflow recovery tempera-
ture and balance temperature of the control volume.
The impinging heat can be calculated as:

Q̇ imp = 1

2
ṁimp · V 2

imp (29)

where the symbol V imp is the impinging velocity of droplets ob-
tained from the solution of the droplets’ flowfield.

4.2.2. Latent heat
The latent heat of freezing and the one of evaporation or subli-

mation in unit time can be calculated as follows:

Q̇ freeze = L f · f · (ṁimp + ṁflowin) (30)

Q̇ es = −Les · ṁes (31)

where the symbols L f , Les denote the latent heat of freezing and
evaporation or sublimation per kilogram respectively.

Therefore:

Q̇ latent = Q̇ freeze + Q̇ es (32)

4.2.3. Sensible heat
The sensible heat occurs with the change of time and temper-

ature. The thermodynamic process of icing in the control volume
can be simplified as: the whole input water is first heated up to
freezing temperature T f at which icing phenomenon occurs, then
the ice and the water that hasn’t been frozen reach the balance
temperature Tb finally.

The sensible heat can be calculated as follows:

Q̇ sensible = Q̇ simp + Q̇ sflowin + Q̇ sice + Q̇ sflowout (33)

Q̇ simp = ṁimp · C pw · (Timp − T f ) (34)

Q̇ sflowin = ṁflowin · C pw · (Tflowin − T f ) (35)

Q̇ sice = ṁice · C pi · (T f − Tb) (36)

Q̇ sflowout = ṁflowout · C pw · (T f − Tb) (37)

where, the symbols Cpw , Cpi denote the specific heat of the water
and ice respectively while Timp , Tflowin denote the droplets’ tem-
perature before they impinge onto the airfoil and the temperature
of incoming water from the previous control volume.

Therefore, the energy balance equation can be written as:

Q̇ ca + Q̇ imp + Q̇ lantent + Q̇ sensible = 0 (38)

4.3. Solution of the mass and energy balances

Substituting Eq. (27) into (38), an equation whose unknowns
include f and Tb can be derived and a constraint f ∈ [0,1] of
this equation can be obtained due to the expression 0 � ṁice �
(ṁimp + ṁflowin − ṁes). The computation of this derived equation
can be performed from the stagnation point and along the upper
and lower airfoil surfaces, respectively, for there is no runback wa-
ter accepted in the control volumes that the droplets locate at the
both sides of the stagnation point. Another assumption is that any
runback water flowing out of a control volume will move along the
direction away from the stagnation point and in this way the value
of ṁflowout in a control volume is equal to the one of ṁflowin in the
adjacent downstream control volume.

After the value of f is obtained in every iced control volume
on the airfoil, the values of ṁice and ṁflowout of this control volume
can be calculated through substituting f into Eq. (27).
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Fig. 6. Computational mesh of the clear NACA0012 airfoil.

5. Prediction of ice shape

For 2-D application, the ice amount in every iced control vol-
ume can be calculated as:

V ice = ṁice · �T

ρi
(39)

where, �T is time step and ρi is ice density.
According to the ice amount, the ice shape after a time step

can be built with the assumption that ice grows in the direction
normal to the airfoil surface. It should be noted that when the
shape of the airfoil is changed by ice accretion, the air flowfield is
changed together with it. Therefore, the air flowfield needs to be
re-solved, so do the governing equations for droplets. The collec-
tion efficiency is then re-calculated. The ice amount is re-evaluated
through the thermodynamic model and the new ice shape can be
built according to this process. The final shape of ice accretion can
be obtained by repeating these steps until the end of ice accretion
time.

For 3-D application, the rime ice accretion is simulated using
an assumption that the supercooled droplets freeze immediately
when they impinge onto the wing surface. Since the rime ice ac-
cretion forms in an environment with a low temperature, this
assumption is reasonable. In 3-D application, therefore, the ice
amount can be calculated as:

V ice = LWC · v∞ · β · A′ · �T

ρi
(40)

where the symbol A′ denotes the impingement area of a 3-D con-
trol volume.

6. Results and analysis

This paper investigates the ice accretions on a NACA0012 airfoil
for 2-D application and on a GLC-305 wing model for 3-D applica-
tion.

6.1. Ice accretion prediction for two-dimensional application

Fig. 6 shows the computational mesh of the clear NACA0012
airfoil.

The computational conditions are: the angle of attack α = 4◦ ,
the velocity of free stream u∞ = 67.05 m/s, the pressure p∞ =
101300 Pa, the liquid water content LWC = 1.0 g/m3, the median
volumetric diameter MVD = 20 μm and ice accretion time is se-
lected to be 360 seconds.
Fig. 7. Water collection efficiency of the airfoil at −28.3 ◦C.

Fig. 8. Comparison of ice shapes at −28.3 ◦C.

Fig. 7 shows the water collection efficiency of the airfoil at
−28.3 ◦C.

Figs. 8, 9, 10 show the comparisons between the predicted re-
sults and experimental data [14] at different environmental tem-
peratures.

In Fig. 8, the environmental temperature is low enough
(−28.3 ◦C) to make the droplets freeze immediately at their im-
pinging location and the predicted ice shape shows the obvious
characteristics of the rime ice accretion. In Fig. 9, the environmen-
tal temperature is higher (−13.34 ◦C) and the predicted ice shape
has characteristics of the mixed ice accretion. In Fig. 10, the typical
glaze ice accretion is predicted because of the high environmental
temperature (−6.1 ◦C). From the comparisons between the pre-
dicted results and the measured ones in Figs. 8, 9, 10, some fairly
good agreements could be found.

6.2. Ice accretion prediction for three-dimensional application

Fig. 11 shows the geometrical outline of the GLC-305 wing
model [9]. Fig. 12 shows the mesh distribution on the wing sur-
face.

The computational conditions are: the velocity of free stream
u∞ = 89.97 m/s, the pressure p∞ = 61 282 Pa, the liquid water
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Fig. 9. Comparison of ice shapes at −13.34 ◦C.

Fig. 10. Comparison of ice shapes at −6.1 ◦C.

content LWC = 0.51 g/m3, the median volumetric diameter MVD =
14.5 μm and ice accretion time is selected to be 300 seconds.

Figs. 13(a), (b) show the distributions of local collection effi-
ciency on the wing at 0◦ and 6◦ angles of attack respectively.

Fig. 14 shows the predicted ice accretion shapes at 0◦ and 6◦
angles of attack, respectively.

From Figs. 13(a) and 14(a), it can be seen that at 0◦ angle of at-
tack the distribution of the local collection efficiencies and the pre-
dicted ice shapes on the lower and upper wing surface are almost
symmetrical. When the angle of attack is equal to 6◦ (in Figs. 13(b)
and 14(b)), the main impingement region of the droplets moves to
the lower surface of the wing and the ice accretion is mostly found
on the lower surface accordingly.

From Fig. 13, the collection efficiency in the wingtip region is
larger than in the other region on the wing at both 0◦ and 6◦
angles of attack due to the sweep effect of the wing. This phe-
nomenon is consistent with the computational result in Ref. [3].
As for the predicted results of the 3-D rime ice accretion, from
Figs. 15(a) to (c), as compared with the experimental results and
LEWICE results, the present results are in a good agreement with
them. Moreover, from Figs. 15(a) to (c), the thickness of the ice ac-
cretion decreases, and this phenomenon agrees with variation of
the collection efficiency.
Fig. 11. Geometrical outline of the GLC-305 wing model.

Fig. 12. Mesh distribution on the GLC-305 wing model.

7. Conclusions

A numerical simulation method to predict the ice accretions
on a 2-D airfoil and a 3-D wing is presented based on the Eu-
lerian two-phase flow theory. Several conclusions can be drawn
through investigating the ice accretions on a NACA0012 airfoil and
a GLC-305 wing model:

(1) The permeable wall proposed in this paper could simulate the
droplet impingement on the iced surface effectively and it is
convenient to obtain the collection efficiency through apply-
ing this wall condition into the numerical computation of the
droplet flowfield.

(2) The convective heat transfer coefficient on iced surface is eval-
uated through employing an integral boundary layer method
modified to consider the roughness effect so that the solution
of complete N-S equations can be avoided. The thermody-
namic model which is based on the classical Messinger model
could simulate the icing process while this model is relatively
brief.
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Fig. 13. Distribution of local collection efficiency on the wing at 0◦ and 6◦ angle of
attack.

Fig. 14. Predicted ice accretion shape at 0◦ and 6◦ angle of attack.

(3) Ice accretions corrupt the designed aerodynamic shapes of the
airfoil and wing. There are different ice shapes in different
conditions, and the corruption of aerodynamic shapes caused
by glaze ice is more severe than that of rime ice. Moreover
the ice accretion of NASA 0012 airfoil and the GLC-305 wing
model are simulated through the calculation, and the results
are reasonable and feasible.
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