
1025Regen. Med. (2015) 10(8), 1025–1043 ISSN 1746-0751

part of

Review

10.2217/rme.15.63 © 2015 Future Medicine Ltd

Regen. Med.

Review 2015/08/30
10

8

1043

2015

It is estimated that by 2030, almost 23.6 million people will perish from cardiovascular 
disease, according to the WHO. The review discusses advances in stem cell therapy for 
myocardial infarction, including cell sources, methods of differentiation, expansion 
selection and their route of delivery. Skeletal muscle cells, hematopoietic cells and 
mesenchymal stem cells and embryonic stem cells-derived cardiomyocytes have 
advanced to the clinical stage, while induced pluripotent cells are yet to be considered 
clinically. Delivery of cells to the sites of injury and their subsequent retention is a 
major issue. The development of supportive scaffold matrices to facilitate stem cell 
retention and differentiation are analyzed. The review outlines clinical translation of 
conjugate stem cell-based cellular therapeutics post-myocardial infarction.
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A total of 11.2% of deaths worldwide are 
caused by ischemic heart disease according to 
the WHO statistics 2012 [1]. Ischemic injury 
of the heart causes loss of blood flow along 
the coronary arteries supplying the heart 
mainly affecting the flow to the ventricu-
lar portion of the heart. The relatively low 
regenerative potential of the resident cardiac 
stem cells (CSCs) is insufficient to replace 
the approximately 50 g of heart muscle, in 
other words, two billion cells that follows 
scar formation [2,3]. Infiltration of fibro-
blasts with the deposition of collagen and 
fibrin results in scar tissue formation [4]. The 
resultant damage leads to an increase in ten-
sile strength, elongation and wall thinning 
of the heart, commonly known as ‘infarct 
expansion’ [5]. Details of the mechanisms are 
beyond the scope of this article and can be 
found in a thorough review by Pfeffer and 
Braunwald [4].

Pluripotent stem cells, are prolifera-
tive cells that can differentiate into cardio-
myocytes fibroblasts, endothelial cells and 
smooth muscle cells are most sought after to 
replace post infarct scar tissue. There is also 
a need to arrest the progression of the infarct 

with various means immediately after the 
infarct. In this regard, adult bone marrow 
stem cells (BMCs) and mesenchymal stem 
cells (MSCs) have moved into extensive clin-
ical trials, although CSCs and pluripotent 
stem cell-derived cardiovascular cell types 
are also showing promise. Methods such 
as cardiac restraints, hydrogels and patches 
have been proposed for the infarct condi-
tion and, while some of the methods are still 
in nascent stages of validation, others have 
reached clinical trials. Furthermore, scaffold 
materials are used to deliver cells temporar-
ily or permanently to support the infarcted 
section of the heart. In this regard, scaffold 
materials are being envisaged as combination 
therapies along with stem cells and growth 
factors. The strategy required to mitigate the 
extent of damage due to infarction involves 
control and treatment at various levels of 
infarct progression. This can involve admin-
istration of anti-apoptotic agents in order to 
reduce cellular necrosis and resultant apopto-
sis that occur due to lack of oxygen [6]. The 
second goal should be the replacement of the 
scar tissue with cellular/molecular mediators 
that promote cardiac tissue regeneration. The 
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primary goal should be to target the infarct as early 
in its progression as possible, ideally before scar tis-
sue is formed. Clinical therapies look at the infusion 
of cells immediately after, in other words, 2–3 days 
to a week after the infarct and up to a year and have 
found that some cell types are more suitable than oth-
ers. This review focuses on the various aspects of the 
sources of stem cells, their expansion and finally their 
clinical application in the stages of deterioration after a 
myocardial infarction (MI) episode. Various currently 
researched materials are compared and the criteria 
of the scaffold materials for cardiac applications are 
discussed.

Cell sources
There are different choices available to clinicians 
as given in Figure 1 for transplantation to the heart. 
Depending on the cell type in question the protocol 
will involve various steps of isolation, expansion and 
finally delivery as given in Figure 2. Endothelial cells 
and smooth muscle cells, the two most predominant 
cell types, must be represented in the cellular popula-
tions to be delivered. The modes of delivery of cellular 
payload can be systemic or localized for which various 
strategies of transplantation of cells have been eluci-
dated. Resistance to ischemia is one of the major hur-

dles for stem cell populations to differentiate toward a 
cardiomyocyte population at the infarct site, especially 
with regard to electromechanical integration, and 
cellular retention.

Adult stem cells
Skeletal muscle myoblast
Skeletal myoblasts (satellite cells) have been classically 
identified as a stem cell population resident within 
non-cardiac musculature. These can differentiate into 
various lineages, such as bone, cartilage and fat and 
are identified by the marker Pax7 [7]. Recently, non-
satellite CD34-, CD45- and Sca1- stem cell populations 
isolated from skeletal muscle cells have demonstrated 
rhythmic beating similar to cardiomyocytes in in vitro 
culture [8]. The autologous nature of these cells ensures 
their suitability for transplantation. These cells can 
further be modified to express markers like VEGF 
before transplantation into the heart.

Non-satellite skeletal myoblast cells, when trans-
planted into adult mice, have shown transdifferentia-
tion into cardiac tissue [8]. The resistance of satellite 
cells to ischemia in vivo has resulted in better retention 
times as well as higher survival rates [9].

The suitability of autologous ex vivo expanded 
skeletal myoblasts to form viable muscle in severely 
scarred myocardium has been established [10]. It was 
also found that the catheter-mediated delivery of cells 
resulted in increased wall thickening at the target 
site and improved ejection fractions [11,12]. A conse-
quent study reported a 3–8% change in the ejection 
fractions, even to the extent of ventricular remodel-
ing [13]. Ongoing clinical trials are further looking into 
catheter-mediated delivery of cells [14].

The autologous nature of the satellite cells, along 
with the structural benefits that these cells endow, 
does create a case for the suitability of this stem cell 
population for transplantation. Nevertheless, there is 
doubt as to whether the cells provide only structural 
benefits rather than form new cardiac tissue, due to 
lack of trans-differentiation to cardiac tissue [15]. Fur-
thermore, there are issues with engraftment; studies 
have reported low engraftment with over 90% injected 
cells dying within the first few days. A high number 
of cells, in other words, 600–800 million cells, when 
transplanted, have caused arrhythmia [16].

Adult bone marrow- & blood-derived stem cells
BMCs have been known to supply the entire repertoire 
of cells in the hematopoietic lineages, cardiomyocytes 
and various other lineages. Among the populations 
present, Lin-c-kit+, CD133+, CD133-CD34+, c-kit+ and 
Sca1+ cells are found to be suitable for cardiac regen-
eration [17,18]. In vitro encapsulation of cells, within 

Figure 1. Cell sources and their methods of application 
for cardiac regeneration.
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Figure 2. Strategies for cell therapy of cardiac tissue after a myocardial infarction.
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porous type I collagen 3D conduits scaffolds resulted 
in expression of cardiac structural genes like α-myosin 
heavy chain (MHC) and β-MHC to sustained high 
levels for 28 days in culture [19].

c-kit+ Sca1- cells improved survival, enhanced car-
diac function, reduced regional strain, attenuated 
remodeling and decreased infarct size in mice [20]. 
While Lin-c-kit+ cells resulted in significant occupa-
tion of the infarct areas, when transplanted [18]. Other 
authors have suggested that the c-kit+ BMCs do not 
fuse but differentiate to the endothelial and cardiac 
lineage after transplantation [21]. Canine models have 
been studied for a comparison of catheter-based endo-
cardial to direct epicardial injections of blood-derived 
endothelial progenitors, as an alternative to intrave-
nous administration of cells as shown in Table 1 [22]. 
Endocardial and epicardial administration routes of 
administration presented similar kinetics.

The TOPCARE-AMI clinical trial administered 
blood- and bone marrow-derived mononuclear cells 
post infarction with a beneficial effect through the 
prevention of remodeling [44,45]. Reversal of remodel-
ing through paracrine signaling has been suggested as 
a probable mechanism [46]. Furthermore, bone marrow 
mononuclear stem cell administration has a negligible 
effect on left ventricular ejection fractions (LVEF), but 
a positive effect on remodeling at 6 months [47].

Improvements in ejection fractions varying from 
a minimum of 2% to a maximum of 7% have been 
reported with the administration of adult BMCs [48–51], 

but these improvements do not include left ventricu-
lar (LV) remodeling [52], local or global wall thicken-
ing [53] changes in LV end-diastolic volume and infarct 
size [54]. Other studies have demonstrated that these 
stem cells do not transdifferentiate into cardiomyo-
cytes in an infracted heart [55]. Breitbach et al. have 
reported calcification and ossification at the infarct 
site, with the use of BMCs [56]. In studies using the 
CD34+ cell population, retrieval of clinically relevant 
numbers is possible only through in vitro expan-
sion before administration [57]. The CD133+-purified 
hematopoietic stem cells (HSCs) when tested showed 
only limited improvement in cardiac function [17,58]. 
To promote further work in this area, ongoing clinical 
trials are trying to assess the efficacy further [59,60].

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are defined by the 
expression of antigenic receptors for CD105+/CD90+

/CD73+, CD34-/CD45-/CD11b- or CD14-/CD19- or 
CD79alpha-/HLA-DR1--specific antibodies and their 
ability to differentiate into osteogenic, chondrogenic 
and adipogenic lineages [61]. Koninckx et al. have 
shown that TGF-β enhances the myocardial differen-
tiation of bone marrow-derived MSCs by the expres-
sion of TnT in monoculture and MHC in coculture 
with rat neonatal cardiomyocytes [62]. They have 
also suggested that co-cultured hMSCs expressed 
the transcription factor GATA-4, but did not express 
Nkx2.5 [63]. 5-azacytidine (5-aza) or dimethylsulfox-
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ide induce rat MSC differentiation toward cardiomyo-
cytes, but have no such effect on hMSCs [64,65]. BMP-2 
or FGF-4 have also been used to enhance the differen-
tiation potential of rat MSCs in vitro [66]. Novel ways 
in which entrapment of cells within hyaluronic acid-
based 3D scaffolds have demonstrated that cell spread-
ing occurs when there are matrix degradation moieties 
present within the scaffold, especially in the presence 
of the RGD peptides [67]. Furthermore, matrix stiffness 
has been shown to be a key factor in MSC proliferation 
within fibrin scaffolds [68].

Some studies suggest that MSCs, when injected 
intramyocardially, differentiated to vascular smooth 
muscle cells or endothelial cells in vivo and showed 
improvements via angiogenesis in a porcine model 
of ischemia [69]. Furthermore, human umbilical 
cord blood-derived MSCs, when transplanted into 
mice, resulted in improvements through paracrine 
effects [70]. Preconditioning of these stem cells with 
5-aza resulted in differentiation of MSCs to cardio-
myogenic cells, when transplanted into mouse models 
of MI; this prevented infarct expansion and eventually 
improved heart function [66,71]. BMP-2 and FGF-4 can 
alternatively be used for the differentiation of MSCs 
toward cardiomyocytes. Studies report that BMP-2- 
and FGF-4-treated MSCs, when transplanted into rat 
models, demonstrated improvements similar to 5-aza-
treated cells [66]. Contrary to claims made about the 
lack of differentiation potential of MSCs, studies have 
shown that they could differentiate to cardiomyocytes 
or fibroblast scar tissue, when transplanted in rats [72]. 
Furthermore, adipose-derived MSCs (ATMSCs) have 
been used as cell sheets to repair the infracted myocar-
dial cells in rats, resulting in the reversal of wall thin-
ning of the myocardium [73]. ATMSCs have induced 
vascularization with VEGF expression, additionally 
eliciting an immune response [39,40]. Cellular reten-
tion studies in porcine animal models transplanted 
with bone marrow-derived MSCs have indicated that 
infarct border zone injection retained more cells than 
direct injection into the heart [29]. Cardiac functional 
improvements in porcine models after transplanta-
tion of bone marrow-derived MSCs have attributed 
improvements to paracrine effects, while reporting 
retention of as low as 0.035% cells at the infarct site 
after peri-infarct injection of cells [28]. A study by 
Toma et al. has shown that hMSCs, when injected 
intraventricularly into SCID mice, differentiated 
into cardiomyocytes with the expression of cardiac-
specific TnT, α-MHC, α-actinin and phospholamban 
with visible-striated fibers [74]. Furthermore, ablation 
of proinflammatory receptors TNF-α on MSCs has 
been linked to increased survival and reduced infarct 
size [75].

Clinical studies have shown that bone marrow-
derived MSCs are safe for use through the transen-
docardial route of administration [76]. Intravenous 
transplantation of allogenic hMSCs at various single 
dosages of 0.5, 1.6 and 5 million cells/kg resulted in 
marked improvements with reduction of arrhythmias 
and improved LV function but no dosage response for 
most parameters [77]. Clinical studies have shown that 
the administration of MSCs to the heart leads to a 
therapeutic result via a paracrine effect rather than dif-
ferentiation of MSCs to cardiomyocytes, while others 
have suggested differentiation toward a lineage based 
on the environment. To realize the full potential of 
MSCs as therapeutic agents, their differentiation to 
cardiomyocytes, in order to replace the cellular losses 
caused due to an infarct, is vital. Cardiomyocytes as 
well as angiogenic progenitors, if produced by the 
MSCs, will replenish the cells from the depleted heart 
and increase circulation to the affected area. Clinical 
studies are underway to assess the comparison of trans-
plantation of autologous hMSC transplantation versus 
allogenic hMSCs, transendocardially [78,79].

Cardiac stem cells
The presence of a self-renewing, clonogenic and mul-
tipotent population of cells within the heart that is 
induced by paracrine signaling in the event of ischemia, 
has been established [80]. However, these cells cannot 
overcome the local loss of cells after an infarct [81]. The 
renewal rate of these cells declines at the rate of 1% per 
year at age 25 years to 0.45% at age 75 years [82,83]. The 
different cell populations isolated and characterized are 
c-kit+ cells, Sca1+ (CD31-) cells, isl-1+ (c-kit1- and Sca1-) 
cells and cardiosphere-derived cells [84]. Cardiospheres 
(CSs) are clusters of self-adherent cells formed when 
heart biopsy specimens are expanded in vitro [85]. The 
core of the CS is composed of c-kit+ cells, while cells 
that exhibit endothelial and stem cell markers (Sca-1, 
CD34 and CD31) are on the periphery [86].

Sca1+, when induced by 5-aza-C [81] or oxyto-
cin [87], result in the expression of cardiac transcrip-
tion factors cardiac troponin1, sarcomeric α-actin, 
MHC and Nkx2.5. Oxytocin induces differentia-
tion of the Sca1+/c-kit+ population to cardiomyocytes. 
Sca-1+/CD31- cells differentiate to cardiac myocytes and 
endothelial cells in the presence of FGF, 5-aza-C and 
Wnt antagonist Dkk-1 [87]. Extracellular matrix (ECM) 
stiffness can induce differentiation as well; a matrix 
modulus of 31–35 kPa can support CSs and results in a 
high expression of cardiac markers cardiac TnT (cTnT) 
and cardiac MHC (MYH6) [88]. FGF-2 has been shown 
to play a critical role in the mobilization and differentia-
tion of resident cardiac precursors in the treatment of 
cardiac diseases in vivo [89]. c-kit+ cells have been found 
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to solely mitigate regeneration of a damaged heart [90]. 
They also induce neovascularization on transplantation 
via a paracrine effect [87,91–92]. Oxytocin-activated c-kit+ 
cardiac progenitor cells, when injected at the site of 
coronary occlusion, differentiate to smooth muscle cells 
and endothelial cells [93]. Sca1+ cells, on the other hand, 
show connexin 43, cTnI and sarcomeric α-actin expres-
sion after intravenous infusion into mouse hearts fol-
lowing ischemia/reperfusion [81]. Cardiosphere-derived 
cardiac progenitor cells contribute to improving ven-
tricular function in mouse and swine models [86,94–95]. 
Furthermore, these cells do not induce immune reactiv-
ity, when transplanted [96]. Coronary infusion of CDCs 
in porcine models also provides a good model for the 
safety of the delivery of cells, modes of delivery as well 
as the benefits of such delivery [41].

Autologous c-kit+ CSCs isolated from the right atrial 
appendage have been clinically administered in the 
SCIPIO trial through coronary infusion into patients 
after expansion [97]. LV ejection fraction increased 
from 30 to 38% and the infarct volume decreased 
from on average 32.6 to 7.2 g within 4 months of infu-
sion [97]. However, doubts were cast as to why results 
were published before the trial was completed, further 
as to why patient from the non-randomized part of the 
trials were analyzed and results displayed [98]. Con-
trolled double-blinded and randomized trials over-
turning positive results of non-randomized or partially 
randomized trials were cited to be the reason behind 
the objections. A separate study has harvested CDCs 
after generating CSs from end myocardial autografts 
and demonstrated reduction in scar mass and increase 
in viable tissue in the Phase I CADUCEUS clinical 
trials [99]. Follow-up studies with the patients revealed 
increase in viable myocardium, consistent with regen-
eration; furthermore, patients 1 year after MI are also 
eligible for the treatment and show improvements 
similar to those treated 2–3 months post-MI [100,101].

Clinical relevance of CDC transplantation is pos-
sible only after autologous cardiac tissue is harvested 
from patients during procedures like coronary artery 
bypass grafting (CABG). Although the CADUCEUS 
Phase I clinical trials points to improvements of LVEF 
over bone marrow cell transplantation and the SCIPIO 
trial of the improvements due to c-kit+ cells, there is 
further need for clinical data to ascertain the efficacy 
of these cells [99]. Recently, van Berlo et al. cast doubts 
on the actual effective populations of c-kit+ cells to 
mediate a regenerative response [102]. But the effective-
ness of the cre-lox recombination system used to come 
to their conclusions has been elaborated [103]. Further-
more, the benefits of double-blinded, randomized and 
placebo-controlled clinical trials have to be understood 
to design effective clinical trials.

Pluripotent stem cells
Embryonic stem cells
Embryonic stem cells (ESCs) are cells isolated from 
the inner cell mass of blastocysts and which can give 
rise to the three germ layers, as well as giving rise to 
all the cardiac subtypes. ESCs have demonstrated dif-
ferentiation toward a cardiac lineage and expression of 
cardiac functions [104–110] and further to prove their 
proliferative capacity, since a large number of cells are 
required at the site of infarct [111,112]. In vitro differentia-
tion of ESCs has been optimized in mouse cell lines as 
well as human; while some protocols of differentiation 
work for mouse cell lines, some others work for human 
cell lines [113]. Furthermore, the use of gelatin, agarose 
and poly(lactide-co-glycolide) (PLGA)-based micropar-
ticles within cellular aggregates for differentiation has 
improve gene expression [114]. Apart from simple spon-
taneous differentiation protocols, to usage of mediators 
like BMP-4 and activin A and to coculture pluripotent 
stem cells with endothelial cell lines (END-2) have been 
used for the direct differentiation of ESCs to the car-
diac lineage and to improve the yield of cardiomyocytes 
population generated therein [106,115–116]. ECM mate-
rial stiffness is another aspect that is being studied to 
direct differentiation. A study showed that a dynamic 
module of ~8.6 Pa is suitable, and that differentiation 
was better in the presence of ECM as against collagen 
hydrogels supplemented with cardiac growth factors 
alone [117]. Hyaluronic acid/polyethylene glycol (PEG) 
hydrogel scaffolds with a dynamic modulus ranging 
from 1 to 8 kPa influenced differentiation of chicken 
embryonic cells [118]. Differentiation toward a cardiac 
lineage has led to the production of ECM proteins ver-
sican and hyaluronan [119]. While differentiated cells 
migrate toward fibronectin and noncanonical Wnt gra-
dients [120]. Taken together methods of differentiation, 
isolation, enrichment and storage have been optimized 
to facilitate transplantation [121]. Allogenic transplanta-
tion of undifferentiated ES cells did not lead to a car-
diomyocyte fate in either normal or infarcted hearts, 
neither was an allogenic immune protection observed. 
However, xeno transplants of cardiac-committed mouse 
ESCs into ovine models have proved that ESCs are 
immune privileged, as shown in Table 1 [25]. Cardio-
myocytes derived from human ESCs have been able to 
repopulate rat hearts, suggesting an encouraging sce-
nario for their use with humans [122]. Guinea pig injury 
models have shed light on the protective effects of trans-
planted ES-CMs against arrhythmias while beating in 
sync with host cardiac tissue [123]. Frozen human ESCs-
derived cardiomyocytes could be revived and admin-
istered to nonhuman primates, leading to remuscular-
ization and electromechanical integration albeit with 
the occurrence of nonfatal arrhythmias [124]. Matrix-
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impregnated ES-CMs have utilized matrix properties to 
revascularize host tissue while controlling the immune 
response [125], Ongoing clinical trials are testing the use 
of fibrin gel embedding human ESC-derived CD15+ 
Isl-1+ progenitors [126].

Induced pluripotent stem cells
With the advent of induced pluripotent stem cells 
(iPSCs) in 2006 [127], a new opportunity presented itself 
toward the generation of pluripotent ES-like cells from 
somatic cells. It was shown that normal somatic cells 
could be converted to what are known as ‘iPSCs’ by 
the forced expression of four crucial factors transcrip-
tion factors: Oct4, Sox2, c-Myc and Klf4 [127]. This 
technology has proved itself by its application across 
various species and tissues [128]. iPSCs too have shown 
properties of differentiation similar to ESCs [129–133]. 
Although differentiation protocols have succeeded in 
increasing the efficiency of differentiation, a cause for 
concern with respect to the final administration of 
iPSCs is the undesirable transfer of pathogens and eth-
ical approval for transfer of cells cocultured with other 
cells lines [134], and third isolation of cardiomyocytes 
from the undifferentiated population [135]. Immuno-
logical safety of iPSCs were raised by Zhao et al. [136], 
but implanted tissue grafts obtained from iPSCs-
derived cells implies that these cells are safe to take to 
the next level in tissue engineering of patient-specific 
cells [137]. Furthermore, cardiomyocytes, endothelial 
cells and smooth muscle cells derived from these cells 
have been tested on porcine infarct models, along with 
fibrin-encapsulated IGF. The results indicate a sub-
stantial reduction in infarct size, ventricular wall stress 
and apoptosis [138].

Various aspects of cardiac regeneration such as 
effective differentiation of stem cells, electrical and 
mechanical integration and especially long-term effects 
without adverse side effects – are yet to be dealt with 
in addressing the issue of regeneration of the heart at 
the site of MI [139]. Although it has been indicated that 
hESC-CMs and hiPSC-CMs 80–120 days in culture 
compare well with host cardiac tissue enough to elicit 
better integrative effects on transplantation [140]. Novel 
protocols of reprogramming fibroblast with cardiac 
genes Gata4, Tbx5 and Mef2c have resulted in fibro-
blasts with limited survival and low cardiac molecu-
lar or electrophysiological change [141]. To further the 
iPSCs potential, the Japanese government recently 
gave permission for the conducting of clinical trials for 
the treatment of macular degeneration using iPSCs, 
suggesting a paradigm shift toward the use of iPSCs 
for therapy [142]. To harness ES cell potential, somatic 
cell nuclear transfer (SCNT) or somatic cell repro-
gramming offers a solution for the isolation of patient-

specific cells for treatment. Furthermore, pluripotent 
stem cells generated from parthenogenesis have shown 
potential toward cardiac differentiation and efficient 
integration within host tissue [143].

Combinational therapy
Graft transplantation strategies required to address 
the reduction of vascular endothelial as well as smooth 
muscle cells to effectively address the site of infarct. 
Combined cell approaches like the transplantation of 
skeletal muscles and BMCs have indicated improve-
ments in LVEF in the combined group against the skel-
etal muscle only group [144]. Human CSCs (hCSCs) 
c-kit+ combined with bone marrow MSCs (hMSCs) 
administered to porcine MI models brought about a 
twofold greater reduction in the infarct size as com-
pared with the use of the cell populations alone [43]. 
Further studies report that the administration of 
just bone marrow MSCs results in a 20-fold increase 
in c-kit+ CSCs to synergistically mediate improve-
ments [33]. Pluripotent stem cell differentiation to car-
diac subtypes and transplantation of cardiomyocytes, 
endothelial cells and smooth muscle cells population 
together served to compensate losses to muscle as well 
as vasculature [138]. The transplantation of multiple cell 
types opens up an undiscovered area of cell therapy 
with the potential to study synergistic effects of com-
plimentary cell population in MI therapy. A comple-
mentarity between the cells also gives the opportunity 
to reduce the final number of cells administered along 
with benefits greater than administration of each of the 
cell types alone [144].

Modes of application of stem cells in 
myocardial infarction
Various modes of delivery of cells to the site of 
infarct have been discussed extensively by Jezierska-
Woźniak et al. and the resulting inefficiencies of the 
methods involved [139]. There have been issues with 
retention of cells as well as homing of cells, with meth-
ods like intravenous infusion [145], intracoronary injec-
tion [146] and direct epicardial [147] or endocardial injec-
tion via a catheter [148,149]. Although catheter-based 
clinical trials for transplantation of skeletal myoblast 
show improvements in the infarcted heart [11,150], there 
are other studies that suggest a completely contrary 
scenario to the transplantation of these cells [15]. A 
method that will allow a small population of progeni-
tor cells either unipotent, multipotent or pluripotent to 
be encapsulated and delivered to the site of infarct is 
desirable. This will facilitate retention until differen-
tiation, create a barrier between the undifferentiated 
population and the adult cells, preventing any adverse 
effects due to the undifferentiated population and 
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reduce the final cell number required for transplan-
tation. This should facilitate paracrine effects, if any, 
without the harmful effects of the delivered cells, such 
as ossification and calcification. Furthermore, there is a 
need for direct contact of the tissue with the delivered 
material and cells.

Implantable systems
Cardiac patches
2D approaches have been pioneered in order to have 
strict control on the constructive elements that go into 
the scaffold, namely growth factors, cells and small 
molecules. Cardiac patches were developed to place 
elastic support with/without cells along the external 
ventricular wall of the myocardium for regeneration. 
ECM collagen has been used to prepare patches for 
treatment of MI by the transplantation of CD133+ cells. 
Although there was visible angiogenesis at the site, the 
cells failed to differentiate to cardiomyocytes [151]. Poly-
urethane (PU) and poly(ester urethane) (PEU) rubbers 
are suitable candidates for the heart [152,153]. When car-
diomyocytes were grown on biodegradable polyester 
urethane urea (PEUU), the membrane could contract 
the patch [154]. Other studies have shown that phytic 
acid cross-linked peptides, prepared by electrospin-
ning, mimic the ECM in the heart [155]. Mouse iPSCs-
derived cardiomyocyte cells have been used to pre-
pare tissue sheets on thermoresponsive polymers [156]. 
Poly(glycerol sebacate) (PGS), another material whose 
mechanical characteristics can be tailored to match the 
heart, promoted the growth and beating of ES cell-
derived cardiomyocytes in vitro [157]. Constructs with 
a combination of polytetrafluoroethylene, polylactide 
mesh, and type I and IV collagen hydrogel have been 
used to encapsulate MSCs [158].

PU is elastic and degradable in vivo. Animal trials of 
biodegradable PU-conducted patches promoted con-
tractile phenotype smooth muscle tissue formation and 
improved cardiac remodeling and contractile function 
at the chronic stage [154]. iPSc-derived tissue sheets, 
when implanted in mice, reduced LV remodeling [156].

Poly(tetrafluoroethylene) reinforced porous poly(L-
lactic acid) mesh seeded with bone marrow-derived mes-
enchymal cells and soaked in type I and IV collagen were 
sutured onto the rat infarct wall after a ventriculotomy. 
This resulted in a reduction in aneurysm elongation [158].

Ex situ gelled: hydrogel scaffolds
Hydrogels have been widely used as their mechanical 
properties can be fine-tuned to match those of cardiac 
tissue. Table 2 compares the stiffness of various gels and 
the cardiac matrix.

Hydrogels with stiffness lower than heart tissue 
can be used as temporary space-filling moieties, and 

further can be used to deliver stem cells and/or mol-
ecules for growth. In this regard, collagen injections 
into the ventricular wall have been shown to prevent 
progressive wall thinning, a sequel to permanent heart 
dysfunction, in rats [171]. Furthermore, hydrogels made 
up of ECM and collagen were able to differentiate 
human ESCs in vitro to cardiomyocytes [117]. Growth 
factor bFGF, along with MSC delivery, was demon-
strated by encapsulating within thermoresponsive 
N-isopropylacrylamide (NIPAAm), N-acryloxysuc-
cinimide, acrylic acid and hydroxyethyl methacrylate-
poly(trimethylene carbonate). These hydrogels were 
able to sustain the growth of the cells through bFGF 
release [172]. bFGF has also been used for improvement 
in vasculature by Iwakura et al. [173].

ESCs encapsulated in collagen type I transplanted 
into intramural pouches at the infarct wall, resulted in 
reduction of fractional shortening. Carbohydrate poly-
mers, like alginate, have been used for seeding cells and 
further implantation into mice to prove their efficacy 
as carriers for cells. These implants reduced LV remod-
eling, and it is further proposed as a carrier scaffold for 
iPSCs [174]. Zimmerman et al. have developed tissue by 
casting a mixture of collagen type I along with neona-
tal rat cardiomyocytes into moulds to form engineered 
heart tissue (EHT). These constructs were developed 
into ring-shaped flexible structures and sutured onto 
pericardiectomized rat hearts [175]. The EHT trans-
plant became vascularized and electrically integrated 
in vivo and since these were prepared in serum-free 
media conditions, immunosupression was not required 
during transplantation [175,176]. Engineered heart mus-
cle was developed with a similar approach by assem-
bling cardiomyocytes derived from the differentiation 
ESCs onto EHT [177].

Of all the constructs developed, the ones that were 
successful were those derived from native heart tissue. 
Furthermore, collagen types I and IV have also been 
successful in being able to support cellular growth, cel-
lular vascularization and to allow electrical integration 
within the heart. In case of transplantation of pluripo-
tent stem cells, it will be essential to differentiate these 
on site with molecular mediators entrapped within 
the hydrogel; alternatively, one could use the stiff-
ness characteristics of the hydrogel to differentiate the 
cells. Although robust, the hydrogel approaches can be 
employed only by surgical intervention.

Injectable systems
In situ gelling systems
Implantable systems can only be administered through 
invasive surgical intervention. Thus, implantation of 
these constructs will have to accompany procedures 
like CABG. In situ gelling systems, on the other hand, 
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are defined by a sol-to-gel transition from in vitro to 
in vivo setups, respectively. This method of gelation 
can assist the administration of the gelling polymer 
through a catheter, facilitating a minimally invasive 
method to cardiac treatment. In regard to this, the 
materials that have been studied extensively are fibrin 
glue [178,179], collagen [171], matrigel [180], hyaluronic 
acid [181], keratin [182], ECM [183,184], alginate [174,185]. 
There are many potentially useful materials that can 
fulfill this role and are yet to be tested in this applica-
tion. Endothelial cells home to a self-assembling inject-
able RAD16-II peptide scaffold and cause more angio-
genesis as compared with matrigel. Potential myocyte 
progenitors also populate the peptide microenviron-
ment created in vivo, and the retention of myocytes is 
higher as compared with matrigel [186]. Furthermore, 
this study demonstrated that ESCs spontaneously 
differentiated to αMHC-positive cells in vivo within 
the peptide scaffold. Cell survival was better within 
fibrin glue when delivered through injectable fibrin 
glue scaffolds compared with the cellular cardiomyo-
plasty technique, additionally inducing neovascular-
ization and reducing infarct expansion [179]. This was 
followed up with a study that suggested short-term 
improvements of the alginate fibrin blends at the site 
of infarct [187]. In vivo studies via injection through a 
catheter to a rat heart demonstrated the injectability of 
a porcine heart-derived matrix as well as endothelial 
cell infiltration within the matrix [183,184]. The method 
of delivery has been known to induce improvements 
within the cardiac environment with and without bone 
marrow mononuclear cells when injected with fibrin, 
collagen and matrigel, albeit separately [188,189]. Other 
methods have been studied, such as collagen through 
catheter encapsulated with bone marrow cells [190] and 
without cells [171]. Both these studies showed improve-
ment in LV function without vascularization, but in 
the study by Huang et al., there was also an improve-
ment in vascular density [189]. Another widely available 
tissue culture matrix called Matrigel™, has been used 
as an in situ gel. Studies have demonstrated improve-

ment in LV function with the gel, and ESC delivered 
along with it caused increased vascularization at the 
site of infarct [191,192]. Simulation of injection of mate-
rial to the heart injected at various sites postinfarct 
suggests that administration of a noncontractile mate-
rial at the site of infarct helps reduce stresses on the 
myocardium [193]. Self-assembling peptides have been 
useful in the delivery of IGF to the heart and permit 
the sustained release of the growth factor along with 
aiding the positive effects accrued to the cells deliv-
ered along with the peptide matrix [194]. Ungerleider 
and Christman have dealt with injectables and large 
animal models in detail, and according to their opin-
ion, shorter gelling times are the not suitable for the 
delivery of injectable gels through catheters [195]. Fur-
thermore, expansion and encapsulation through cur-
rent good manufacturing practices, if not performed 
with adequate robustness, result in inefficient scaf-
folds. Despite positive results on a range of materials 
as injectables, alginate without cells is being currently 
clinically tested for its efficacy to prevent ventricu-
lar remodeling [196–198]. Radhakrishnan et al. have 
emphasized the importance of appropriate mechanical 
properties and electrical conductivity of the polymers 
used as injectables to be important in their overall 
regenerative potential [199].

Translational & future perspective
With the innovations in cardiac support devices to 
provide care immediately after an infarct and to pre-
vent cardiac remodeling, it was envisaged that the 
devices and innovations market in the cardiac space 
would get a boost [200,201]. But after a 10-year battle 
with the US FDA, the cardiac mesh support device 
has not seen the light of day, even after positive clini-
cal results. Regulations are established for implant-
able devices, like cardiac stents, valves, pace makers 
and LV assist devices (LAVD) such as HeartMate® I 
and II, CentriMag, SynCardia Total Artificial Heart. 
However, there is no regulation for implant materi-
als, with or without cells, to mitigate therapy. On the 

Table 2. Matrix molecules and the relevant stiffness they can provide.

Congestive heart failure Material stiffness Ref.

Fibrin 50 Pa [159]

Matrigel1 30–120 Pa [160]

Type I collagen gels 20–80 Pa for 1–3 mg/ml [161]

N-isopropyl acryl amide 100–400 Pa [162,163]

Alginate 100 Pa to 6 kPa [164]

Polyethylene glycol 1–3 kPa [165]

Heart 50 kPa in normal hearts or 200–300 kPa in congestive 
heart failure hearts

[166–170]
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other hand, heart injectable regulations are structured 
toward delivery of small molecules via intracoronary, 
intracardiac injections or with transcatheters [195].

Most present clinical trials are performed with 
established autologous stem cell populations. Although 
these have accrued benefits, the loss of cells, paracrine 
effects and differentiation away from the cardiac lin-
eage are an associated issue with transplantation ESCs 
have proved their immune privilege, their propensity 
for teratoma inhibits their usage, but a differentiated 
population of committed ESC-derived cardiomyo-
cytes are a useful proposition as a cell source. Although 
a significant hurdle therein is the efficient differen-
tiation toward a cardiac lineage, obtaining functional 
and viable cells after differentiation and most impor-
tantly electromechanical integration with host tissue 
after implantation is desired. iPSC technologies, on 
the other hand, are yet to be realized in their com-
plete potential and require more work for application. 
Real-time monitoring of cells within embedded matri-
ces has been made possible, through nanoparticulate 
approaches giving us robust tools to monitor and assess 
tissue regeneration in vivo [202]. This will surely bring 
down investment of time into the selection of cells.

Bioreactor systems are being optimized with suit-
able conditions for the expansion and differentiation of 
stem cells [203]. Devices, such as those prepared by Kofi-
dis et al. [204] and Ting et al. [205], can be used for simul-
taneous expansion and differentiation of cells in vitro 
to prepare grafts for transplantation in vivo. Antibody 
purification of cardiomyocytes is available through 
antibody to SIRPA, resulting in a high efficiency for 
selecting cardiomyocytes [206]. These cells can further 
be encapsulated to prepare a 3D architecture and then 
delivered, or grown, in a 2D matrix and layered to have 
a 3D structure for implantation. Good manufacturing 
practice requires that the growth, propagation and dif-

ferentiation of cells for commercial use have to be done 
with animal product-free material [207].

Implant material properties of toxicity, biodegrad-
ability and physical characteristics, like stiffness, are 
established in the literature. Implantation of patches, 
cardiac assist devices and injectable noncontractile 
supports have been studied. Cardiac support patches 
can be administered in the event of superficial scar-
ring of the heart, leading to loss of contractile tissue. 
Injectable hydrogels accompanied with cells can also 
be administered at the border zone to prevent remod-
eling due to scarring. Furthermore, reperfusion pro-
cedures, such as CABG, can be accompanied with 
such implantation of hydrogel grafts at multiple sites 
along the epicardium. This, along with reperfusion, 
will facilitate the ingrowth of stem cells and their final 
differentiation to cardiomyocytes. Additionally, with 
degradable materials, it is possible after a period, the 
cells will be the only remnant of the procedure. Inject-
able materials like self-assembling peptide matrices, 
for example, RAD-16, fibrin glue, alginate, agarose 
can be administered via a transcatheter system, or 
normal cardiomyoplasty, epicardially or endocardi-
ally. Pluripotent stem cells accompanying the implant 
could address the problem of remodeling. The admin-
istration of hydrogel material serves as a two pronged 
strategy; first, to act as a support matrix to the heart 
and prevent any remodeling due to the infarct; and sec-
ond, to allow retention of cells administered within it, 
further improving LVEF. Furthermore, the hydrogel 
must be able to degrade over time and allow cells to 
take over the supporting role after tissue regrowth [208]. 
Although the regulatory hurdles and the translational 
challenges in just administration of hydrogels materials 
are immense, making the journey of hydrogel material 
scaffold along with cells and growth factors a strategy 
with long-term fruition [195].

Executive summary

Stem cells for cell therapy
•	 Stem cells are available with various levels of benefits for an infarct condition.
•	 Pluripotent stem cells offer the better solution in terms of the final cell population that can be derived and 

applied.
Clinical studies
•	 Clinical studies have reported safety, efficacy and dosage response to stem cell populations. Cardiac stem cells 

and mesenchymal stem cells offer by far the best alternatives for auto and allogenic transfer. Pluripotent stem 
cells are yet to be evaluated clinically.

Conclusion
•	 Stem cell and biomaterial approaches are being investigated separately under clinical conditions. Furthermore, 

small molecule delivery for differentiation is still not under consideration.
Future perspective
•	 The dosage, delivery and integration will have to be an approach where, biomaterials act as carriers, support 

for the heart and matrix for differentiation, small molecules aid differentiation and cells compensate for 
the loss.
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