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Abstract 

This paper reports aerodynamic testing results of various styles of bicycle wheels across yaw angles of 0 to 30 
degrees. Wheels considered include disc wheels, a bladed spoke wheel and various depth dished wheels. Testing has 
been completed in a three quarter open jet test section wind tunnel with a anthropomorphic mannequin and rotating 
front and rear wheels. Data is provided as to the influence of the wheel type on the overall drag and side force, and 
yaw and roll moment of the rider and bicycle combination. The results demonstrate that the wheel type has a 
significant effect on both the aerodynamic drag and stability of the bicycle system, and that evaluation of wheel 
aerodynamic performance should not be based on drag alone.  

© 2012 Published by Elsevier Ltd. 
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Nomenclature 

CDA Drag area coefficient - Axial drag force normalised by freestream dynamic pressure 
CSA Side force area coefficient – side force normalised by freestream dynamic pressure 
CMXA  Roll moment normalised by freestream dynamic pressure and bicycle wheelbase 
CMZA Yaw moment normalised by freestream dynamic pressure and bicycle wheelbase 
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Studies by Jones [4] have shown that bicycle stability with a rider has little to do with the gyroscopic 
effect of the turning wheels as has often been suggested. It is the result of torque generated by the centre 
of gravity moving as the bike leans. Therefore large side forces and yaw and roll moments, especially 
acting on the front wheel, are likely to have a strong negative impact on bicycle stability, which must be 
handled by the rider. As such it is important for athletes to select the wheel that will deliver the optimum 
drag reduction without compromising handling or other performance characteristics. Practical experience 
has already led to disk wheels being banned from use as a front wheel in road events for many years and 
are even banned from rear wheel usage in certain events.  

This paper aims to highlight the significance of loads other than axial drag acting on the bicycle 
system as a function of yaw angle and wheel selection. Of particular interest are yaw and roll moments 
and side force. It is suggested that the assessment of wheel performance and selection based solely on 
axial drag without consideration of other loads is an incomplete approach. The intention is that this will 
serve as a starting point for investigation into the effect of these loads on bicycle dynamics and handling. 
An additional product of this work is the comparison of certain specific wheel types as a part of the whole 
bicycle and rider system rather than wheel tests in isolation.  

Note that this work did not assess the effect of these loads on bicycle dynamics. Nor was the local yaw 
moment about the front wheel measured, which will tend to have an effect on the steering stability of the 
bicycle. And no data has been presented as to the aerodynamic rotational resistance of different wheels. 
These parameters are important when modeling the overall aerodynamic performance of a bicycle and 
wheel.

2. Test Procedure 

Testing was conducted in Monash University’s large closed circuit three-quarter open jet wind tunnel. 
The jet exit, with dimensions of 2.6 by 4 m, resulted in a blockage ratio of less than 5% at 00 yaw angle 
for a bicycle with rider. The bicycle was mounted to a roller system by a pair of struts at the rear axle. 
Drive was provided to the front roller via a 200W electric motor with the rear roller connected by belt and 
speed matched to within 1%. Wind speed and wheel speed were maintained constant at 50km/h for all 
tests. Six axis force and moment components were measured using a set of four by three component 
piezoelectric transducers. The length scale adopted for the moment coefficients was the bicycle 
wheelbase. Existing research on standalone wheels indicates that CS and CD are approximately constant 
for most wheels for variations in wind and ground speed. Disk wheels however, do have a dependence on 
this relationship [5], [6], [7]. Variations in performance as a function of wheel to air speed should be the 
subject of future investigations.  

2.1 Bike only testing 

The bicycle was tested in isolation to eliminate any variations introduced by human test subject using a 
motor to drive the front and rear wheels. The test bike was a road specification time trial bike with typical 
tube cross sections and geometry. Cranks were fixed horizontally with saddle and pedals removed. 
Testing was conducted with a range of front wheels each with a flat sided disk rear wheel. 

2.2 Mannequin Testing 

Testing was conducted with an anthropomorphic cycling mannequin in the place of an athlete. The 
mannequin was tested with a different bicycle as it is not compatible with the reference bicycle used for 
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It can be seen in Figures 5 (a) and (b) that the addition of the rider influences the axial drag results 
significantly. There is a difference in the shape of the CDA curves and the expected magnitude differs as a 
result of introducing a rider into the system. For the bike only tests the disk is clearly a high performer 
although it is overtaken by the bladed 3 spoke above 200 yaw. In contrast with the mannequin in place the 
disk is nearly matched by the other deep section wheels at 150 after which point the drag increases 
significantly. This sharp increase may be due to the flow separating from the leading edge of the front 
wheel, although this behaviour was not observed without the mannequin. At small yaw angles the disk 
does not offer a large drag reduction benefit compared to the deep section wheels (Deep V 85 and Bladed 
3 Spoke). These deep rims offer very similar performance across the range of yaw and both also exhibit 
the same minimum at 200 before also increasing and approaching the disk again. The shallower rims 
(Deep V 38 and Open Spoke) in contrast did not exhibit a local minimum up to 300, however, it is 
possible that a similar point could occur if test procedures extended to higher yaw angles.  

3.2 Side Force 

Given that the bike appears to the freestream air as an aerofoil-like section, as yaw angle increases, the 
drag decreased but consequently the side force increased significantly. Both with and without a rider the 
side force coefficient curves display a linear relationship to yaw angle. CSA values were similar in 
magnitude for both the bike only and mannequin tests. 

The magnitude of the side force must also be considered. As yaw angle increased drag tended to drop 
but, as expected, side force increased linearly. As can be seen from the coefficients the side force was 
much higher than drag. At 150 yaw, the side force for all wheels was approximately double the drag force. 
For the mannequin fitted with twin disk wheels the side force at 100 was almost double the drag, being 
44N compared to drag for this configuration being of the order of 23N.  

Fig. 6. CSA values for the mannequin setup plotted against yaw angle 

3.3 Moments 

Roll moment coefficients have a linear trend for both bike only and mannequin test conditions. The 
magnitude of results as well as the relative performance was also similar for both cases. To indicate the 
importance of the roll moment on the bicycle dynamics it is possible to estimate the roll or lean angle 
required by the rider in order to counteract the imposed roll moment. With the mannequin fitted with two 
disk wheels the roll moment was 28Nm at 100 yaw angle. For an average sized rider this requires a lean 
angle of the order of 150 to balance the aerodynamic roll moment.  

Yaw moment coefficient trend is similar both with and without rider interference. The addition of the 
rider appeared to have added a linear factor to all of the wheels such that the points have all shifted in the 
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positive moment direction. The pairing of the two shallow wheels and the two deeper wheels remains 
distinctly present in the mannequin results. As an indication of the size of the yaw moments induced on 
the bike, using the mannequin configuration with twin disks the yaw moment at 300 was 20Nm as 
modelled. 

Fig. 7. (a) CMxA for mannequin setup against yaw angle; (b) CMzA for mannequin setup against yaw angle 

4. Conclusion

A range of different front wheels, representative of common styles used in competitive cycling were 
tested in the wind tunnel and force and moment loads recorded. From the data it is apparent that there are 
significant differences in axial drag between the wheels and that appropriate wheel selection can lower 
the drag acting on the bicycle and rider system. The addition of the mannequin to the testing greatly 
influenced the trend of the drag curves, evidence of the interference generated by the rider. For this 
reason it is apparent that wheel performance should not be assessed from isolated wheel tests but from 
more comprehensive tests of wheels as a component in the bicycle and rider system. 

Analysis of the other loads acting on a cyclist exposed to cross winds reveals significant loads in side 
force, roll moment and yaw moment. For all wheels side force was seen to be of similar magnitude to 
drag at 50 yaw and then increased linearly with yaw angle. Similarly the values of roll and yaw moments 
were significant even at low yaw angles. These additional loads, other than axial drag, have the potential 
to increase the rolling resistance of the bicycle as well as negatively impact the dynamics of the bicycle 
and affect the athletes handling and performance. Whilst it may be possible for certain riders to sustain 
these loads under steady conditions, the high cross wind conditions are more likely to occur in gusts 
making it more difficult for the athlete to control.  

The results presented in this paper highlight that is not sufficient to assess the performance of a 
bicycle wheel using only axial drag as the criteria but rather consideration must be taken for the side force 
and roll and yaw moments imparted on the bicycle and rider. 
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