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A study of the two- and three-dimensional features of the low Reynolds number flow past a cylinder
confined between two parallel plates is presented. For a fixed blockage ratio, the stability of the two-
dimensional periodic vortex-shedding flow to three-dimensional perturbations is investigated by means of
a linear Floquet stability analysis. The analysis is extended to flows in the same geometry, but with a forced
transverse oscillation of the cylinder. The problem presents an interesting comparison to the unbounded
case, in that the presence of the walls can significantly affect both the two- and three-dimensional features
of the flow, given a high enough blockage ratio [1,3]. The present study firstly deals with the case of a
stationary cylinder between two plates, before moving on to the forced transverse oscillation problem.

METHOD

For the simulations, a spectral-element solver is used to solve the incompressible Navier-Stokes equations.
For the oscillatory cases, an arbitrary-Lagrangian Eulerian (ALE) mesh deformation technique is employed.
The same methods have been previously employed investigating similar problems [5,6].
A schematic of the problem configuration is shown in figure 1. The geometry consists of a cylinder of
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Figure 1. The problem geometry. The blockage ratio is defined as D/H .

diameter D, placed between two parallel plates spaced a distance H apart; the blockage ratio is defined
by D/H . The fluid velocity profile at the inlet, ui(y) to the channel is given by a Poiseuille parabola.
The Reynolds number is defined as Re = UD/ν, where ν is the kinematic viscosity and U is the cross-
sectional average of the inlet velocity ui(y). Note that the maximum velocity on the centreline of the
channel is equal to 1.5U . The Strouhal frequency is defined as St = foD/U , where fo is the natural
vortex shedding frequency.
Depending on the Reynolds number and blockage ratio, the well-known vortex street usually seen in
cylinder wakes changes, with an inversion of the vortices occurring [1]. At a certain distance downstream,
vortices shed from the upper part of the cylinder cross the centreline of the channel and are positioned
in the lower half of the wake. Camarri and Gianetti, (2010) [1] argued that up to blockage ratios of 1/3,
the linear three-dimensional instability modes for these “inverted” vortex streets were the same mode A
and mode B instabilities as seen in the unbounded cylinder wake. They argued that the near-wake region,
where the modes are strongest, is not significantly affected by the blockage; the same mode structures are
hence observed. For the present study, we select a blockage ratio on this roughly-determined threshold of
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1/3. This is the same blockage ratio used in Celik et al., (2008) [2] in their study of mixing in the wake of a
confined cylinder.

RESULTS

Figure 2(a) plots the variation of Strouhal frequency with Reynolds number for the given geometry. The
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Figure 2. (a) Plot of Strouhal frequency versus Reynolds number for the stationary cylinder of blockage ratio 1/3 (b)

Floquet multipliers as a function of wavelength for the case Re = 200.

Hopf bifurcation from a steady two-dimensional state to a two-dimensional periodic vortex-shedding state
occurs for Re ≈ 98; compared to the unbounded case (Re ≈ 46), the transition is suppressed. The
Strouhal frequencies are significantly higher than for the unbounded case. Figure 2(b) plots the results of
linear Floquet stability analysis for Re = 200. For our analysis, a Floquet multiplier of µ = 1 for a given
wavelength, λ, indicates marginal stability. A multiplier greater than one indicates absolute instability. Note
that for the unbounded case, the critical Reynolds number for absolute instability is Rec ≈ 189; the leading
instability mode (mode A) is of λ ≈ 4.0D and forms in the vortex cores [4]. For the confined case, at
Re = 200, the multipliers are comparatively much higher, indicating a critical Reynolds number much
lower than found for the unbounded case. Investigation of the perturbation fields reveals that the two
modes are qualitatively of the same form. In addition, the mode A instability, of λ ≈ 4.0D, is no longer the
leading mode. For this Reynolds number the leading mode is the shorter wavelength mode B. This mode
typically becomes critical, for the unbounded case, at Re ≈ 260 [4]. Further testing will determine a critical
Reynolds number for the flow, and the leading mode.
An explanation for the increased multipliers in the confined case for mode B lies in the structure of the
mode and its relation to the base flow. Typically, in the unbounded case, mode B forms in the shear layer
braids between the vortex cores. This is evident in the plot in figure 3 of the Re = 200 base flow and
perturbation field for the leading mode (λ ≈ 0.81). The positioning of the mode B instability on the shear
layer braids is evident. Comparing again to the unbounded case, we note that the confined case exhibits

Figure 3. Contours of the base flow spanwise vorticity for Re = 200, overlaid with contour lines spanwise vorticity
of the leading linear instability mode (λ = 0.81). Dashed lines indicate negative vorticity.
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Figure 4. Contours of spanwise vorticity for the case Re = 100, with transverse oscillation of the cylinder, (A = 0.4D,
f = f0).

an acceleration due to constriction around the cylinder which is not present in the unbounded case. This
acceleration results in a higher effective Reynolds number, which in turn creates stronger shear layers,
upon which the mode B instability grows.
For the oscillatory simulations, an oscillation amplitude of 0.4D is used, this being the value tested in Celik
el al., (2008) [2]. Figure 4 plots vorticity contours for the case Re = 100, with an oscillation frequency
f = f0, with the cylinder in the upper-most position of its oscillation. The vortex shedding locks on to the
natural frequency. The energy of the oscillation draws small vortices from the channel walls, which can be
seen forming and then moving into the mainstream flow. For the stationary cylinder case, this phenomenon
only occurs further downstream; for the oscillatory case, the near-wake region - where the linear instability
modes principally act - is significantly affected.

CONCLUSION

A linear stability analysis of the flow past a cylinder confined between two plates has shown – for Reynolds
numbers base on the mean inlet flow – that the mode B instability is considerably more unstable, compared
to the unbounded case. This is likely due to the acceleration of the fluid through the constrictions, and the
subsequent effect on the shear layers. The mode remains qualitatively the same. For the transversely-
oscillating cylinder, vortices shed from the channel walls appear to penetrate further into the near-wake
region of the cylinder wake. Further investigation will show how these changes in the base flow with the
oscillation affect the absolute instability modes and at what limit the qualitative similarities with the modes
from the unbounded case disappear.
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